Контрольная работа: Метод квадратных корней
0.0033
E =
-0.0167
0.0371
-0.0371
-0.3558
Обусловленность матрицы снижает ошибку вычислений у матриц с более высокой размерностью, т.е. с увеличением размерности разряженной матрицы ее точность увеличивается (ошибка вычислений снижается).
Анализ результатов
Подводя итоги можно сделать следующий вывод. Точность решения зависит как от обусловленности, разреженности и мерности матрицы, так и в целом комбинация этих составляющих влияет на точность полученного решения. Хотя в некоторых случаях однозначного ответа дать невозможно, так как точность зависит еще и от того, насколько громоздки были вычисления, и как много требовалось округлений, а также все ли были учтены недочеты. А также если корни будут близки к целым корням, то и точность решения будет выше.
Заключение
В данной контрольной работе был проанализирован один из методов решения систем линейных алгебраических уравнений: метод квадратных корней. Метод был предложен для решения системы Ax=b, где матрица A – симметрическая, хотя не исключено, что метод может использоваться и не для симметрических матриц, тогда исходную систему можно привести к виду AA¢x=bA¢, полученную систему легко можно решить методом квадратных корней.
Также в данной системе были проанализированы разного рода матрицы, и их влияние на точность полученного решения. Основываясь на полученных выводах, можно контролировать в каких конкретно моментах удобно решать систему линейных алгебраических уравнений методом квадратных, а когда лучше использовать другой метод.
Литература
1. Государственные стандарты. ИТ. комплекс стандартов и руководящих документов на АС. Издание официальное. Комплект стандартизации и метрологии СССР. М. – 1991.
2. Копченова Н.В., Марон И.А. Вычислительная математика в примерах и задачах. М.: «Наука», 1972.
3. Писсанецки С. Технология разряженных матриц. – М.: Мир, 1988.
4. Сарычева О.М. Численные методы в экономике: Конспект лекций. Новосибирск: НГТУ, 1995.
5. Численные методы. Методические указания. НГТУ, 2002.