Контрольная работа: Метод найменших квадратів

Метод найменших квадратів

У процесі вивчення різних питань природознавства, економіки і техніки, соціології, педагогіки доводиться на основі великої кількості дослідних даних виявляти суттєві фактори, які впливають на досліджуваний об’єкт, а також встановлювати форму зв’язку між різними зв’язаними одна з одною величинами (ознаками).

Нехай у результаті досліджень дістали таку таблицю деякої функціональної залежності:

Таблиця 1

x

x1

x2

xn

y

y1

y2

yn

Треба знайти аналітичний вигляд функції , яка добре відображала б цю таблицю дослідних даних. Функцію можна шукати у вигляді інтерполяційного поліному. Але інтерполяційні поліноми не завжди добре відображають характер поведінки таблично заданої функції. До того ж значення дістають у результаті експерименту, а вони, як правило, сумнівні. У цьому разі задача інтерполювання табличної функції втрачає сенс. Тому шукають таку функцію , значення якої при досить близькі до табличних значень . Формулу називають емпіричною , або рівнянням регресії на . Емпіричні формули мають велике практичне значення, вдало підібрана емпірична формула дає змогу не тільки апроксимувати сукупність експериментальних даних, «згладжуючи» значення величини , а й екстраполювати знайдену залежність на інші проміжки значень .

Процес побудови емпіричних формул складається з двох етапів: встановлення загального виду цієї формули і визначення найкращих її параметрів.

Щоб встановити вигляд емпіричної формули, на площині будують точки з координатами . Деякі з цих точок сполучають плавною кривою, яку проводять так, щоб вона проходила якомога ближче до всіх даних точок. Після цього візуально визначають, графік якої з відомих нам функцій найкраще підходить до побудованої кривої. Звичайно, намагаються підібрати найпростіші функції: лінійну, квадратичну, дробово-раціональну, степеневу, показникову, логарифмічну.

Встановивши вигляд емпіричної формули, треба знайти її параметри (коефіцієнти). Найточніші значення коефіцієнтів емпіричної формули визначають методом найменших квадратів . Цей метод запропонували відомі математики К. Гаусс і А. Лежандр.

Розглянемо суть методу найменших квадратів.

Нехай емпірична формула має вигляд

, (1)

де , , …, - невідомі коефіцієнти. Треба знайти такі значення коефіцієнтів , за яких крива (1) якомога ближче проходитиме до всіх точок , , …, , знайдених експериментально. Зрозуміло, що жодна з експериментальних точок не задовольняє точно рівняння (1). Відхилення від підстановки координат у рівняння (1) дорівнюватимуть величинам .

За методом найменших квадратів найкращі значення коефіцієнтів ті, для яких сума квадратів відхилень


(2)

дослідних даних від обчислених за емпіричною формулою (1) найменша. Звідси випливає, що величина (2), яка є функцією від коефіцієнтів , повинна мати мінімум. Необхідна умов мінімуму функції багатьох змінних ─ її частинні похідні мають дорівнювати нулю, тобто

, , …, .

Диференціюючи вираз (2) по невідомих параметрах , матимемо відносно них систему рівнянь:

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 240
Бесплатно скачать Контрольная работа: Метод найменших квадратів