Контрольная работа: Метод простых итераций с попеременно чередующимся шагом
.
Отсюда ,
(4.5)
Из (4.4) и (4.5), двигаясь в обратном порядке, легко получить (4.3). Следовательно, условие (4.3) равносильно совокупности условий (4.4) и (4.5). Из (4.4) и (4.5) получаем следствие:
(4.6)
Докажем сходимость процесса (4.1) при точной правой части. Справедлива следующая теорема.
Теорема: Итерационный процесс (4.1) при условиях , и (4.3) сходится в исходной норме гильбертова пространства.
Доказательство:
.
При условиях , и (4.3) второй интеграл сходится, так как
.
Здесь .
так как сильно стремится к нулю при . Таким образом, . Теорема доказана.
Сходимость при приближенной правой части
Докажем сходимость процесса (4.2) при приближенной правой части уравнения . Справедлива следующая теорема.
Теорема: При условиях , и (4.3) итерационный процесс (4.2) сходится, если выбирать число итераций из условия .
Доказательство: Рассмотрим
.
Оценим , где
Найдём на максимум подынтегральной функции
.
Так как
Если , то
Если , то
при ,
поэтому. Отсюда получим . Поскольку и , то для сходимости метода (4.2) достаточно потребовать, чтобы . Таким образом, достаточно, чтобы . Теорема доказана.
Оценка погрешности