Контрольная работа: Метод простых итераций с попеременно чередующимся шагом
Оценим теперь . Покажем, что
, (4.9)
т.е. , т.е.
Преобразовав последнее неравенство, получим
После возведения обеих частей неравенства в квадрат и приведения подобных членов, получим очевидное неравенство
.
В силу равносильности неравенств справедливо неравенство (4.9), так что
.
Таким образом, для справедлива оценка
.
Оценим в точке
.
Сначала потребуем, чтобы , т.е.
.
Усилим неравенство
.
Отсюда . При , причём, при .Пусть , тогда при условии
(4.10)
имеем , т.е. . В противном случае , и оно нас не интересует. Оценим при условии (4.10) функцию .
Для этого сначала оценим , так как в точке функция . Найдем, при каких условиях выполняется неравенство
(4.11)
Подставив в (4.11), получим
что после упрощения даёт
Возведём обе части неравенства в квадрат, получим
1 случай: