Контрольная работа: Методика економіко-математичного програмування
x5 = 9
F(X) = 1*5 = 5
Складемо двоїсту задачу до поставленої задачі лінійного програмування.
9y1+5y2-y3≤1
10y1-y2+13y3≤3
45y1+42y2+4y3 => max
y1 ≥ 0
y2 ≤ 0
y3 ≤ 0
Рішення двоїстої задачі дає оптимальну систему оцінок ресурсів. Використовуючи останню інтеграцію прямої задачі знайдемо, оптимальний план двоїстої задачі. Із теореми двоїстості слідує, що Y = C*A-1.
Сформуємо матрицю A із компонентів векторів, які входять в оптимальний базис.
Визначивши обернену матрицю А-1 через алгебраїчне доповнення, отримаємо:
Як видно із останнього плану симплексної таблиці, обернена матриця A-1 розміщена у стовбцях додаткових змінних.
Тоді Y = C*A-1 =
Запишемо оптимальний план двоїстої задачі:
y1 = 0.11
y2 = 0
y3 = 0
Z(Y) = 45*0.11+42*0+4*0 = 5
Завдання 3
Розв’язати транспортну задачу.
1 | 4 | 7 | 9 | 1 | 250 |
2 | 3 | 1 | 2 | 4 | 300 |
2 | 1 | 3 | 1 | 4 | 150 |
110 | 80 | 100 | 90 | 70 |
Розв’язок
Побудова математичної моделі . Нехай xij — кількість продукції, що перевозиться з і -го пункту виробництва до j -го споживача . Оскільки , то задачу треба закрити, тобто збалансувати (зрівняти) поставки й потреби:
У нашому випадку робиться це введенням фіктивного постачальника, оскільки . З уведенням фіктивного споживача транспортній таблиці додатково заявляється n робочих клітинок.
Ціни, додатковим клітинкам, щоб фіктивний стовбець був нейтральним щодо оптимального вибору планових перевезень, призначаються усі рівні нулю.