Контрольная работа: Методы формализованного представления систем в исследованиях
Таким образом, теоретико-множественные формулы переводят систему Sx языка реальности в абстрактную систему, описываемую искусственным языком, имеющим соответствующий словарь (множество элементов, множество состояний, множество признаков и т.д., отображенных определенными символами) и правила образования новых понятий – композиций (множество отношений, законов, аксиом). Сложность языка определяется сложностью отображаемой системы и допустимой степенью абстрагирования.
Благодаря тому, что при теоретико-множественных представлениях систем и процессов в них можно вводить любые отношения, эти представления:
служат хорошим языком, с помощью которого облегчается взаимопонимание между представителями различных областей знаний;
могут являться основой для возникновения новых научных направлений, для создания языков моделирования, языков автоматизации проектирования.
Однако свобода введения любых отношений приводит к тому, что в создаваемых языках моделирования трудно ввести правила, закономерности, используя которые формально, можно получить новые результаты, адекватные реальным моделируемым объектам и процессам (как это позволяют делать аналитические и статистические методы). Поэтому первоначально при применении теоретико-множественных представлений стремились использовать ограниченный набор отношений.
2.4 Логические методы
Логические отображения являются частным случаем теоретико-множественных отображений. Они переводят реальную систему и отношения в ней на язык одной из алгебр логики (двузначной, многозначной), основанных на применении алгебраических методов для выражения законов формальной логики (рис.5).
Рисунок 5 - Логические отображения
Наибольшее применение получила бинарная алгебра логики Буля (булева алгебра). Алгебра логики оперирует понятиями: высказывание, предикат, логические операции (логические функции, кванторы). В ней доказываются теоремы, приобретающие затем силу логических законов, применяя которые, можно преобразовать систему из одного описания в другое с целью ее совершенствования: можно, например, получить более простую структуру (схему), содержащую меньшее число состояний, элементов, но осуществляющую требуемые функции.
Логические методы представления систем относятся к детерминированным. На базе математической логики созданы и развиваются теории логического анализа и синтеза, теория автоматов. На основе логических представлений первоначально начинали развиваться некоторые разделы теории формальных языков. В силу ограниченности смысловыражающих возможностей бинарной алгебры логики в последнее время имеются попытки создания многозначных алгебр логики с соответствующими логическими базисами и теоремами.
Логические методы применяются при исследовании новых структур систем разнообразной природы (технических объектов, текстов и др.), в которых характер взаимодействия между элементами еще не настолько ясен, чтобы было возможно их представление аналитическими методами, а статистические исследования либо затруднены, либо не привели к выявлению устойчивых закономерностей. В то же время следует иметь в виду, что с помощью логических алгоритмов можно описывать не любые отношения, а лишь те, которые предусмотрены законами алгебры логики и подчиняются требованиям логического базиса.
Логические представления нашли широкое практическое применение при исследовании и разработке автоматов разного рода, автоматических систем контроля, а также при решении задач распознавания образов. Логические представления лежат в основе теории автоматов. На их базе развиваются прикладные разделы теории формальных языков.
В то же время смысловыражающие возможности логических методов ограничены базисом и функциями алгебры логики и не всегда позволяют адекватно отобразить реальную проблемную ситуацию. Попытки же создания многозначных алгебр логики на практике пока не находят широкого применения из-за сложности создания логического базиса и доказательства формальных теорем многозначной алгебры логики.
2.5 Лингвистические и семиотические представления
Лингвистические и семиотические представления (рис. 6) – самые молодые методы формализованного отображения систем.
Рисунок 6 - Лингвистические и семиотические представления
Лингвистические представления базируются на понятиях тезауруса T (множество смысловыражающих элементов языка с заданными смысловыми отношениями; тезаурус характеризует структуру языка), грамматики G (правила образования смысловыражающих элементов разных уровней тезауруса), семиотики (смысловое содержание формируемых фраз, предложений и других смысловыражающих элементов) и прагматики (смысл для данной задачи, цели).
Семиотические представления основываются на понятиях: знак, знаковая система, знаковая ситуация. Семиотика возникла как наука о знаках в широком смысле. Однако наиболее широкое практическое применение нашло направление лингвистической семиотики. С теоретической точки зрения границу между лингвистическими и семиотическими представлениями при разработке языков моделирования можно определить характером правил грамматики (если правила не охватываются классификацией правил вывода формальных грамматик Н.Холмского, то модель удобнее отнести к семиотической и применять принципы ее анализа, предлагаемые семиотикой). Для практических приложений модели лингвистических и семиотических представлений можно рассматривать как один класс формализованного представления систем.
Данные представления возникли и развиваются в связи с потребностями анализа текстов и языков. Однако в последнее время эти представления начинают широко применяться для отображения и анализа процессов в сложных системах в тех случаях, когда не удается применить сразу аналитические, статистические представления или методы формальной логики. В частности, лингвистические и семиотические представления являются удобным аппаратом (особенно в сочетании с графическими представлениями) для первого этапа постепенной формализации задач принятия решений в плохо формализуемых ситуациях, чем и был вызван возрастающий интерес к этим методам со стороны разработчиков сложных систем. На их основе разрабатывают языки моделирования, автоматизации проектирования и т.д.
Что касается недостатков методов, то при усложнении языка моделирования трудно гарантировать правильность получаемых результатов, возникают проблемы алгоритмической разрешимости, возможно появление парадоксов, что частично может быть устранено с помощью содержательного контроля и корректировки языка на каждом шаге его расширения в диалоговом режиме моделирования. При этом создатель языка не всегда может объяснить его возможности, происходит как бы выращивание языка, у которого появляются новые свойства.
2.6 Графические представления
К графическим представлениям (рис. 7) относятся любые графики (графики Ганта, диаграммы, гистограммы и т.п.) и возникшие на основе графических отображений теории (теория графов, теория сетевого планирования и управления и т.п.), то есть все то, что позволяет наглядно представить процессы, происходящие в системах, и облегчить таким образом их анализ для человека (лица, принимающего решения).
Рисунок 7 - Графические представления
Графические представления являются удобным средством исследования структур и процессов в сложных системах и решения различного рода организационных вопросов в информационно-управляющих комплексах, в которых необходимо взаимодействие человека и технических устройств (в том числе – ЭВМ).
Широкое применение на практике получила теория сетевого планирования и управления. Удобным средством представления информации различного рода при применении всех групп методов являются графики, диаграммы и другие графические формы. Графически представляют результаты аналитических расчетов, статистические закономерности и т.д.
Для ускорения формализации и анализа сетевых моделей графические представления удобно сочетать с лингвистическими и семиотическими, что позволяет автоматизировать процесс формирования модели.
Для описания систем управления на практике используется ряд вышеуказанных формализованных методов, которые в разной степени обеспечивают изучение функционирования систем во времени, изучение схем управления, состава подразделений, их подчиненности и т.д., с целью создания нормальных условий работы аппарата управления, персонализации и четкого информационного обеспечения управления.
Иначе говоря, обследование системы управления в рамках выбранного метода формализованного описания должно выявить оптимальные варианты построения, организации и функционирования реальной системы.
Применяемые методы формализованного описания систем управления должны способствовать в конечном итоге созданию четких организационных механизмов управления, используемых объектов.