Контрольная работа: Модель авторегрессии в корреляционной теории

Тогда из (13) следует выражение для параметрической оценки СПМ

. (14)


Выражение (14) широко используется в параметрическом методе спектрального оценивания.

В качестве параметров, полностью характеризующих спектральную оценку случайного процесса, выступают коэффициенты АР и порядок модели.

Параметрическое спектральное оценивание обладает рядом преимуществ по сравнению с традиционными методами спектрального оценивания. К ним относятся: более высокое спектральное разрешение при использовании коротких выборок, отсутствие боковых лепестков.

С помощью модели АР можно получать спектральные оценки случайных процессов со сложной формой СПМ.

Для этого может быть придется использовать модели АР большого порядка. На основе модели АР легко синтезируются оптимальные фильтры подавления, согласованные не только по частоте и полосе спектра, но и по форме спектра случайного процесса.

Достоинством формулы (14) является возможность анализировать СПМ в аналитическом виде, что невозможно сделать при использовании традиционных методов спектрального оценивания на основе преобразования Фурье.

Например, можно найти формулы для определения частоты максимумов и минимумов СПМ.

Чтобы определить положение максимума или минимума АР оценки СПМ, нужно взять производную от (14) по и приравнять ее к нулю. Корни полученного уравнения определяют положение экстремумов функции СПМ.

При , можно показать, что

, (15)

где – частота на которой находится максимум СПМ.


3. Характеристическое уравнение модели авторегрессии

Модель АР, описываемая уравнением (1), может быть представлена в операторной форме

, (16)

где оператор АР имеет вид

. (17)

Действие оператора сдвига z на текущий отсчет описывается следующим образом

. (18)

Из условия устойчивости формирующего АР фильтра с рациональной передаточной функцией (11), следует условие стационарности АР процесса. Для проверки стационарности случайного АР процесса используется характеристическое уравнение

. (19)

Если корни характеристического уравнения (19) лежат внутри единичного круга на комплексной плоскости, то процесс АР удовлетворяет условию стационарности и его корреляционная функция стационарна. Характеристическое уравнение (19) можно представить также в виде

. (20)


Тогда условие стационарности заключается в том, что корни характеристического уравнения (20) должны лежать вне единичного круга на комплексной плоскости.

Используя (19) или (20) оператор АР (17) можно представить в виде

. (21)

Из (21) следует, что уравнение АР (1) можно записать следующим образом

. (22)

К-во Просмотров: 303
Бесплатно скачать Контрольная работа: Модель авторегрессии в корреляционной теории