Контрольная работа: Модель авторегрессии в корреляционной теории

1. Принципы построения модели авторегрессии

В основу модели АР положена корреляция отсчета случайного процесса в текущий момент времени с некоторым конечным или бесконечным числом отсчетов в предыдущие моменты времени. Корреляционные связи позволяют осуществить регрессию текущего отсчета на предшествующие отсчеты.

Такой вид регрессии называется авторегрессией. В уравнении АР текущий отсчет представляется взвешенной суммой предыдущих с некоторыми коэффициентами веса

, (1)

где - коэффициенты АР, - некоррелированные случайные отсчеты, - порядок модели АР.

Величина

, (2)

называется предсказанием случайной величины . Разность между текущим значением отсчета и его предсказанием называется ошибкой предсказания

. (3)

Величина характеризует, по существу, максимальную точность предсказания текущего отсчета, а ее статистические свойства определяют выбор порядка модели АР.

Из (1) видно, что построение АР модели случайного процесса сводится к нахождению коэффициентов АР и определению порядка .

Умножив правую и левую части (1) на , а затем усреднив, можно получить систему уравнений

, , (4a)

, (4б)

где - значения функции корреляции случайного процесса

- дисперсия ошибок предсказания модели АР, - дисперсия случайного процесса . Набор уравнений (4а) и (4б) называется полной системой уравнений Юла – Уокера.

Решением этой системы являются коэффициенты АР и дисперсия ошибок предсказания. При выводе уравнений (4а) было учтено, что

, , , (5a)

, , . (5б)

Соотношения (5) следуют из некоррелированности ошибок предсказания . Решение системы уравнений (4а) можно представить в матричном виде

, (6a)

где


,,. (6б)

Как видно из (4а), уравнение не изменится, если вместо использовать нормированные значения функции корреляции , которые называются коэффициентами корреляции. Очевидно, что при этом параметры модели АР останутся прежними.

Как следует из (6а, б), для первого порядка модели АР

. (7)

Для модели АР второго порядка коэффициенты АР равны

,

. (8)

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 299
Бесплатно скачать Контрольная работа: Модель авторегрессии в корреляционной теории