Контрольная работа: Надежность информационных систем

В момент времени t + Δ t система будет находиться в состоянии kc вероятностью

(31)

– вероятность того, что система не уйдет из состояния k.

Устремив получим общее выражение для дифференциального уравнения

(32)

При k=0 (33)

k=1 (34)

k=m+1 (35)

Начальные условия

(36)

т.е. в начальный момент времени все элементы исправны.

Уравнение (32) – уравнение А.Н. Колмогорова для однородного марковского процесса (λ = const).

Уравнению (32) можно сопоставить граф переходов из одного состояния системы в другое

На основании анализа уравнений А.Н. Колмогорова, Б.В. Васильева [1] было сформулировано мнемоническое правило составления таких уравнений по заданному графу. В левой части каждого уравнения стоит производная по времени от вероятности нахождения системы в k-м состоянии в момент времени t. Число членов в правой части равно алгебраической сумме произведений интенсивностей переходов на соответствующие вероятности пребывания системы в тех узлах графа, откуда совершается непосредственный переход системы в другие (соседние) узлы. Причем, слагаемым, которым соответствуют выходящие из k-го узла стрелки графа, приписывается – знак минус, а входящем – знак плюс. Как видим уравнение (32) составлено по этому правилу.

Применяя преобразование Лапласа:

(37)

систему дифференциальных уравнений сводим к алгебраической, решая которую получим

(38)

Зная изображение по Лапласу находим

(39)

Решая (39), получим

, (40)

где (41)


Окончательно

, (42)

где (43)

Например, m=1, a/b=1

B0 (1)=1+n; B1 (1)=n

(44)

(45)

К-во Просмотров: 337
Бесплатно скачать Контрольная работа: Надежность информационных систем