Контрольная работа: Обработка результатов прямых многократных измерений

Министерство образования и науки Российской Федерации

Волгоградский государственный технический университет

(ВолгГТУ)

Кафедра Технология машиностроения

Семестровая работа

по метрологии

Обработка результатов прямых многократных измерений

Выполнил: ст. гр. АУ – 323 Добриньков А. В.

Проверил: Карабань В. Г.

Волгоград 2010

Задание

1. Построить полигон, гистограмму и теоретическое распределение измеренных величин.

2. Проверить согласие теоретического и эмпирического распределений.

3. Определить доверительные интервалы.

4. Определить границы диапазона рассеивания значений и погрешностей.

Исходные данные

Номер интервала Границы интервалов Частотаmi
свыше до
1 19,97 19,99 2
2 19,99 20,01 2
3 20,01 20,03 12
4 20,03 20,05 25
5 20,05 20,07 35
6 20,07 20,09 62
7 20,09 20,11 66
8 20,11 20,13 77
9 20,13 20,15 39
10 20,15 20,17 29
11 20,17 20,19 20
12 20,19 20,21 7
13 20,21 20,23 2

1. Построение эмпирического и теоретического распределений

При построении гистограмм и полигонов по оси абсцисс откладывают значения результатов измерений (середины интервалов xi ), а по оси ординат – вероятность попадания в каждый i – тый интервал:

.

Вычислим на каждом участке: (Σmi = 378)

Номер интервала Эмпирические частности Середина интервала , мм
1 0,005291 19,98
2 0,005291 20,00
3 0,031746 20,02
4 0,066138 20,04
5 0,092593 20,06
6 0,164021 20,08
7 0,174603 20,10
8 0,203704 20,12
9 0,103175 20,14
10 0,07672 20,16
11 0,05291 20,18
12 0,018519 20,20
13 0,005291 20,22

Построим гистограмму и полигон по полученным значениям:

Для построения теоретического распределения необходимо определить приближённые значения математического ожидания и среднеквадратического отклонения S.

Номер интервала Частота Середина интервала mi xi mi xi 2 S
1 2 19,98 39,96 798,4008 0,043395663 20,10486772
2 2 20 40 800
3 12 20,02 240,24 4809,6048
4 25 20,04 501 10040,04
5 35 20,06 702,1 14084,126
6 62 20,08 1244,96 24998,7968
7 66 20,1 1326,6 26664,66
8 77 20,12 1549,24 31170,7088
9 39 20,14 785,46 15819,1644
10 29 20,16 584,64 11786,3424
11 20 20,18 403,6 8144,648
12 7 20,2 141,4 2856,28
13 2 20,22 40,44 817,6968
Σ 378 7599,64 152790,47

По виду гистограммы и полигона предполагаем нормальный закон распределения с функцией плотности

рассеивание погрешность гистограмма плотность

,

,

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 166
Бесплатно скачать Контрольная работа: Обработка результатов прямых многократных измерений