Контрольная работа: Общая методика выполнения прочностных расчетов
Тогда выражение (1.12) принимает вид
(1.13)
Для более сложных форм ударных импульсов необходимо определить спектр воздействующих частот и рассчитать ударную нагрузку как взвешенную сумму спектральных составляющих.
Для моделей типа балок и пластин при падении конструкции ударная перегрузка
(1.14)
где Н – высота падения, м; Zmax – максимальный прогиб детали, м.
В качестве допускаемых параметров прочности обычно принимают допускаемые механические напряжения в конструкциях.
Допускаемые механическим напряжением называется такое безопастное напряжение, которое деталь может выдержать в течение заданного срока эксплуатации.
Допускаемое напряжение при расчете деталей на прочность определяется по формулам :
[ σ ] = σпред /n и [ t ] = tпред /n,
где σпред , tпред – продельные значения механических напряжений ; n – запас прочности.
Определение запаса прочности при статических нагрузках. При постоянных напряжениях, возникающих при статических нагрузках, прочность хрупкого материала и материала с низкой пластичностью определяется приделом прочности σпред = σв , а пластичного – приделом текучести σпред = σт .
Запас прочности устанавливают в виде произведения частных коэффициентов :
n = n1 n2 n3 , (1.15
где n1 – коэффициент достоверности определения расчетных нагрузок и напряжений ; при повышенной точности n1 = 1,2 – 1,5 ; для оценочных расчетов n1 = 2 – 3 ; n2 –коэффициент, учитывающий степень ответственности детали, обусловливающий требования к надежности ; для мало ответственных и не дорогих деталей n2 = 1 – 1,2, если поломка детали вызывает отказ – n2 =1,3, аварию – n2 =1,5 ; n3 – коэффициент, учитывающий однородность механических свойств материалов, который при статических нагрузках следует выбирать в зависимости от степени пластичности материала (σт /σв ) : при σт /σв = 0,49 – 0,55 коэффициент n3 =1,2 – 1,5 ; при σт /σв = 0,55 – 0,70 n3 =1,5 – 1,8 ; при σт /σв = 0,7 – 0,9 n3 =1,8 – 2,2. Для деталей, отлитых из пластмасс, n3 =1,6 – 2,5 ; для хрупких однородных материалов n3 = 3 – 4 ; для хрупких неоднородных материалов n3 = 4 – 6 . При переменных нагрузках для однородных материалов и высокоточных технологий n3 = 1,3 – 1,5, для среднего уровня технологии n3 = 1,5 – 1,7 ; для материалов пониженной однородности n3 = 1,7 – 3.
Прочность при цилиндрических нагрузках. В процессе эксплуатации на детали ботовой, морской, возимой и носимой РЭА в большинстве случаев действуют нагрузки, циклически изменяющиеся по частоте и амплитуде. Следовательно, в них возникают различные циклические напряжения. Необходимо различать следующие основные циклы напряжений:
1) симметричный знакопеременный, когда наибольшие и наименьшие напряжения противоположны по знаку и одинаковы по значению ;
2) асимметичный знакопеременный, когда наибольшие и наименьшие напряжения противоположны по знаку и неодинаковы по значению ;
3) пульсирующий, когда напряжения изменяются от нуля до максимума.
Придел выносливости для симметричных циклов обозначают индексом (–1), для пульсирующих – индексом (0).
Приделы выносливости на изгиб с симметричным циклом :
для стального проката σпред = σ-1 =(0,2 –0,3)σв (1+ σ0,2 /σв ), где σ0,2 – условный придел текучести при статическом растяжении ;
для стального литья и медных сплавов σпред = σ-1 =(0,3 –0,4)σв ;
для алюминиевых и магнитных сплавов σпред = σ-1 =(0,3 –0,6)σв ;
Приделы выносливости при симметричном цикле связаны ориентировочной зависимостью :
t-1 = (0,5 – 0,7)σ-1 .
Приделы выносливости при пульсирующем и знакопеременном симметрических циклах связаны зависимостями :
при изгибе σпред = σ ≈ (1,4 – 1,6)σ-1 ;
при растяжении σпред = σ0 ≈ (1,5 – 1,8)σ-1 (1.16)