Контрольная работа: Определение интегралов


Разделяя переменные в этом дифференциальном уравнении относительно функции v, находим:

Так как выражение в скобках подобрано так, чтобы оно равнялось нулю, подставим найденное значение в уравнение для определения u.

Таким образом находим общее решение системы


Подберем переменную С так чтобы выполнились начальные условия , что будет являться частным решением дифференциального уравнения:

Полученное частное решение дифференциального уравнения, соответствующее поставленным начальным условиям.

Задание. Найти общее решение дифференциального уравнения и частное решение, удовлетворяющее начальным условиям , при . (,)

Решение: Пусть имеем неоднородное линейное уравнение второго порядка:

Структура общего решения такого уравнения определяется следующей теоремой:

Теорема: Общее решение неоднородного уравнения представляется как сумма какого-нибудь частного решения этого уравнения y* и общего уравнения y соответствующего однородного уравнения:

Чтобы найти общее решение соответствующего однородного уравнения (то есть такого, в котором правая часть равна нулю) необходимо найти корни характеристического уравнения и по ним определить вид решения.

Характеристическое уравнение в нашем случае есть:

К-во Просмотров: 243
Бесплатно скачать Контрольная работа: Определение интегралов