Контрольная работа: Определение вероятности событий
5. Пассажир может ждать летной погоды трое суток, после чего едет поездом. По прогнозам вероятность летной погоды в первые сутки 0,5, во вторые — 0,6, в третьи — 0,8, Х — число полных суток до отъезда пассажира.
Найти:
А) ряд распределения Х.
Вероятность того, что пассажир не будет ждать равна вероятности летней погоды в первые сутки, т.е. Р(0)=0,5.
Вероятность, что пассажир улетит через сутки равна вероятности того, что в первые сутки будет нелетная погода, а во вторые — летная, т.е.
.
Вероятность того, что пассажир улетит через двое суток равна вероятности трех независимых событий: первые сутки — нелетная погода; вторые — нелетная; третьи — летная
Вероятность того, что пассажир уедет поездом через трое суток равна вероятности того, что все трое суток погода нелетная
Б) функцию распределения F ( x ).
Функцию F ( x ) строим с помощью формулы:
В) m x ищем по формуле:
Г) D x применяем формулу:
т.е. дисперсия равна математическому ожиданию квадрата ее отклонения:
Д) В данном промежутке x принимает только одно значение x =2, следовательно:
6. Дана функция распределения случайной величины
Найти:
А) константу а.
Из условия непрерывности F ( x ) следует
Б) р( x ), по определению , т.к. F ’( x ) при равно (0)’=0, при