Контрольная работа: Оптимизация организационных решений
А0 А3 А4 А2 А1 А0
А0 А3 А1 А4 А2 А0
75 + 10 = 85
60 + 40 = 100
85 + 20 = 105
80 + 5 = 85
Таким образом, устанавливаем, что есть два равноценных оптимальных варианта последовательности строительства объектов.
Задание №4
Оптимизация очередности строительства объектов
в неритмичных потоках
Определить оптимальную очередность строительства нескольких объектов, при которой достигается минимальная общая продолжительность строительства, а также величину общей продолжительности строительства при исходной и оптимальной очередности строительства объектов.
Выделяем поток №3 как поток наибольшей продолжительности. Затем по каждому объекту находим общее рабочее время, предшествующее потоку наибольшей продолжительности и общее рабочее время, последующее за потоком наибольшей продолжительности.
В третью строку под матрицей записываем со своим знаком разницу между продолжительностью работы на данном объекте последней и первой бригад.
На основе данных дополнительных строк устанавливается рациональная очередность строительства объектов из следующих соображений:
а) на первом месте располагается объект с наибольшим значением Σапос . Остальные объекты располагаются так, чтобы Σапр постепенно возрастало, а Σапос снижалась к концу матрицы;
б) на первом месте располагается объект с наибольшим значением (а m - а1 ) , на последнем – с минимальным значением (а m - а1 ) ; остальные объекты располагаются так, чтобы (а m - а1 ) изменялось постепенно от максимального значения к минимальному.
Принятая очередность строительства объектов по п. а :
Принятая очередность строительства объектов по п. б :
Найдем общую продолжительность строительства комплекса:
а) при исходной очередности объектов
Т1 = (8 + 8 + 5 + 0 + 4) + (6 + 5 + 4) + (5 + 4) = 49;
б) при очередности объектов 5-2-1-4-3
Т2 = (4 + 8 + 8 + 0 + 5) + (5 + 2 + 0) + (2 + 0) = 34;
в) при очередности объектов 4-5-3-2-1
Т3 = (0 + 4 + 5 + 8 + 8) + (2 + 1 + 9) + (1 + 9) = 47.