Контрольная работа: Основы дискретной математики

ОДЕССКИЙ НАЦИОНАЛЬНЫЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Кафедра компьютерных интеллектуальных систем и сетей

РАСЧЕТНО-ГРАФИЧЕСКАЯ РАБОТА

по дисциплине

«Основы дискретной математики»

Выполнил

студент группы АЕ-074

Ф.И.О.

Проверил

доцент кафедры КИСС

Мартынюк А. Н.

Одесса 2008


Введение

Данная расчетно-графическая работа по дисциплине «Основы дискретной математики» включает в себя:

· задачу минимизации заданного выражения алгебры множеств на основании известных свойств;

· анализ заданного бинарного отношения в общем виде, построение его графика и полное определение свойств отношения, включая свойства, унаследованных им от соответствий;

· анализ заданной в определенном функциональном базисе логической схемы: вывод формул булевых функций для каждого элемента и схемы в целом, с одновременной их минимизацией на основании известных свойств и тождеств, а также построение таблиц истинности;

· преобразование формулы булевой функции заданной логической схемы в КНФ, ДНФ, СКНФ и СДНФ, а также ее минимизацию методами Квайна-МакКласки, Петрика, и с помощью карт Карно;

· пополнение булевой функции заданными безразличными входными наборами и минимизацию пополненной функции с помощью карт Карно, а также методов Квайна-МакКласки и Петрика;

· перевод полученных минимизированных формул из булева базиса в заданный функциональный базис и синтез соответствующих логических схем.


Задание № 1

Упрощение заданного выражения алгебры множеств

1.1 Выбор варианта задания

Варианты РГР образуются заданием индивидуальных:

· выражения алгебры множеств;

· бинарного отношения;

· исходной логической схемы;

· безразличных входных наборов.

В основе выбора варианта лежит процедура определения целочисленного остатка от деления выражения, в котором присутствует число. (Вариант 9)

Таблицы – см. литература 1.

Выбор варианта выражения алгебры множеств.

«№ операций» = 9mod7+1=3

№ операции a b g d l
Вариант 3 Ø \ Ç - È

«№ операндов»=9mod5+1=5

№ операнда оп-д1 оп-д2 оп-д3 оп-д4 оп-д5
Вариант 5 AdF BbA EdB aE AgB

Результаты подставляются в шаблонную формулу:

(a (Оп-д1 b (a Оп-д2))) g (ùa ((Оп-д3 d Оп-д4) l (ùa Оп-д5)))

1.2 Минимизация заданного выражения

Заданное выражение выглядит следующим образом:

( ( A – F) \ ( B\ A) ) Ç ( E AÇB) )

Минимизация проводится с использованием восемнадцати законов. (см. литературы 2)

1) (( A – F) \ ( B \ A )) =

(( A \ F) ( F \ A) \ ( B A )) =

(( A F) ( F  A ) (  ( B A ))) =

( A F) ( F A ) ( B  A ) =

( A F)B =

A FB

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 321
Бесплатно скачать Контрольная работа: Основы дискретной математики