Контрольная работа: Основы дискретной математики

0110-

1001-

0011-

1101-

1011-

1111-

K 0 =

~001-

00~1-

01~0

1~01-

10~1-

~011-

11~1-

1~11-

K1 =

K

~0~1
1~~1

K2 =

K3

Очевидно, во множестве K2 склеивание S-кубов невозможно. Поэтому следующее множество K3 – пустое. Полученная сокращенная форма содержит четыре простые импликанты (неотмеченные кубы, то есть те, которые не склеились в процессе сравнения).

Теперь построим таблицу Квайна. Ее строкам соответствуют простые импликанты из сокращенной формы, столбцам – конституэнты булевой функции.

0001 0100 0110 1001 0011 1101 1011 1111
01~0 a - -
~0~1 b - - - -
1~~1 c - - - -

Очевидно, каждая импликанта является существенной. В этом случае тупиковая форма единственна. Она же будет являться и минимальной формой.

МДНФ=ùx1x2ùx4+x1x4+ùx2x4

Полученная формула в точности равна полученной еще на этапе анализа логической схемы. Действительно, при анализе мы пользовались аналитической минимизацией, применяя те ли иные свойства. Универсальный метод Квайна-Мак-Класки показал, что полученная ДНФ действительно является минимальной.

Полученный вывод можно подтвердить также с помощью метода Петрика. Логическое условие покрытия всей таблицы Квайна имеет вид:

bÙaÙaÙ(bÚc)ÙbÙcÙ(bÚc)Ùc

Производя простые преобразования, получаем:

aÚbÚc

Таким образом, с помощью метода Петрика получаем следующее выражение для МДНФ:

МДНФ=ùx1x2ùx4+x1x4+ùx2x4

К-во Просмотров: 328
Бесплатно скачать Контрольная работа: Основы дискретной математики