Контрольная работа: Основы дискретной математики
Теперь рассмотрим минимизацию методом карты Карно:
МДНФ=ùx1x2ùx4+x1x4+ùx2x4
Мы получили результат, который совпадает с двумя результатами, полученными раннее. Это говорит о правильности произведенных вычислений.
Минимизация методами Квайна-Мак-Класки и Петрика, а также с помощью карт Карно формулы частично определенной булевой функции, полученной из таблицы истинности п.4, пополненной заданными безразличными входными наборами.
Выбор безразличных наборов
По построенной таблице истинности булевой функции заданной логической схемы строится таблица истинности частично определенной булевой функции выбором четырех случайно выбранных безразличных входных двоичных наборов, на которых частичная булева функция не определена (безразлична). В случае наложения безразличного набора на единичный набор (на котором функция принимает значение «1») для данного набора значений аргументов сохраняется значение функции, равное «1».
Номер варианта безразличных входных наборов частичной булевой функции {№Наб1, №Наб2, №Наб3, №Наб4} из таблицы 8, обозначаемый как «№Наборов», получается определением смещенного на «1» целочисленного остатка от деления «№Зачетки» на число «11»- число вариантов таблицы 8 по следующей формуле:
«№Наборов»= «№Зачетки»%9+1
где %- операция получения целочисленного остатка от деления.
«№Наборов»=(9 %11)+1=3, т.е. из таблицы 8 следует, что выбраны безразличные наборы {№Наб1, №Наб2, №Наб3, №Наб4}={8,10,11,12}=
={0111, 1001, 1010, 1011}.
Таким образом, понятно, что изменений не произойдет, так как все безразличные наборы уже присутствуют в наборах булевой функции, полученной из сводной таблицы. Значит вычисление минимизации для функции, пополненной безразличными наборами, даст результат, полученный раннее, т.е.
МДНФ= ùx1x2ùx4+x1x4+ùx2x4
Перевод полученных в пунктах 5 и 6 минимальных формул из булевого базиса в заданный функциональный базис.
Построим логическую схему для МДНФ:
МДНФ=ùx1x2ùx4+x1x4+ùx2x4
Преобразуем МДНФ из булевого базиса {Ú, Ù, ù} в заданный функциональный базис:
МДНФ=(((((x2ù→x4)ù→x1)/(x2ù→x4)ù→x1))/((x4ù→x2)/(x4ù→x2)))/
/(((x2ù→x4)ù→x1)/(x2ù→x4)ù→x1))/((x4ù→x2)/(x4ù→x2))))/(x1/x4)
Логическая схема для полученной формулы булевой функции выглядит следующим образом:
Выводы
В ходе выполнения расчетно-графической работы по дисциплине «Основы дискретной математики» были закреплены основные теоретические знания и практические навыки.
В процессе расчетно-графической работы для построенных в соответствии с индивидуальным вариантом множественной формулы, бинарного отношения и логической схемы выполнен анализ, минимизация множественных и булевых формул, перевод булевых формул в заданный базис и синтез схем в заданном базисе.
Литература:
1. Методические указания выполнения расчетно-графической работы по дисциплине «Основы дискретной математики» для студентов специальностей 6.0804 и 6.0915. / Сост. А. Н. Мартынюк. – Одесса: ОНПУ, 2002.
2. Конспект лекций по дисциплине «Основы дискретной математики» для студентов специальностей 6.0804 и 6.0915. / Сост. А. Н. Мартынюк. – Одесса: ОНПУ, 2002.