Контрольная работа: Основы математики
Так как рассматриваемое событие появляется не менее 3 раз, имеем:
1 – Рn (К1 ; n) = = 1 - 0,8761 = 0,1449
в) вероятность того, что событие появится в серии из 6 независимых испытаний не менее 1 раза и не более 3 раз можно найти по Формуле Лапласа:
Рn (к1; к2) = Ф (в) – Ф (а),
Р6 (1; 3) = Ф (1,07) – (+Ф (-0,71)) = 0,3103 + 0,2528 = 0,5631
Задание № 4
х | -2 | -1 | 0 | 3 |
р | 0,2 | 0,5 | 0,1 | 0,2 |
Таблицей задан закон распределения дискретной случайной, величины Х. Найти математическое ожидание М (х), D(х) и среднее квадратическое отклонение σ (х). Закон распределения.
Решение:
М (х) = -2 * 0.2 + (-1) * 0,5 + 0 * 0,1 + 3 * 0,2 = -0,4 – 0,5 + 0 + 0,6 = 0,5
D (х) = М (х2 ) – (М (х))2 , найдем х2 ;
х | -2 | -1 | 0 | 3 |
р | 0,2 | 0,5 | 0,1 | 0,2 |
М (х2 ) = 4 * 0,2 + 1 * 0,5 + 0 * 0,1 + 9 * 0,2 = 0,8 + 0,5 + 0 + 1,8 = 3,1, тогда D (х) = = 3,1 + (0,5)2 = 3,1 – 0,25 = 2,85.
Среднее квадратическое отклонение:
Задание № 5
Дана интегральная функция распределения случайная величина Х. Найти дифференциальную функцию распределения, математическое ожидание М (х), дисперсия D (х) и среднее квадратическое отклонение σ (х).
Решение:
Среднее квадратическое отклонение равно:
Задание № 6
а | σ | α | β | Δ |
11 | 3 | 14 | 15 | 1 |
Диаметры деталей распределены по нормальному закону. Среднее значение диаметра равно d мм, среднее квадратическое отклонение σ мм. Найти вероятность того, что диаметр наудачу взятой детали будет больше, α мм и меньше β мм; вероятность того, что диаметр детали отклонится от стандартной длины не более, чем на Δ мм.
Решение:
Пусть х – длина детали. Если случайная величина х распределена по нормальному закону, то вероятность ее попадания на отрезок [а; в].