Контрольная работа: Основы математики

61,7)

[61,7;

71,7)

[71,7;

81,7)

[81,7;

91,7)

[91,7;

104,7]

ni 1 9 14 19 29 14 8 6 wi 0,01 0,09 0,14 0,19 0,29 0,14 0,08 0,06

Рис. 1. Гистограмма относительных частот

Перейдем от составленного интервального распределения к точечному выборочному распределению, взяв за значение признака середины частичных интервалов. Построим полигон относительных частот и найдем эмпирическую функцию распределения, построим ее график:


x i 26,7 36,7 46,7 56,7 66,7 76,7 86,7 98,3
ni 1 9 14 19 29 14 8 6
wi 0,01 0,09 0,14 0,19 0,29 0,14 0,08 0,06

Рис. 2. График интервального распределения.

Рис. 3. График эмпирической функции распределения

= ∑ xi wi = ∑ xi wi

∑ xi wi = 26,7 * 0,01 + 36,7 * 0,09 + 46,7 * 0,14 + 56,7 * 0,19 + 66,7 * 0,29 + 76,7 * 0,14 + 86,7 *0,08 + 98,3 * 0,06 =26,71 + 3, 303 + 6,538 + 10,773 +

+ 19,343 + 10,738 + 6,936 + 5,898 = 90,2

= ∑ = = (26,7 – 90,2)2 * 0,01 +(36,7 – 90,2) 2 *0,09 + (46,7 – 90,2) 2 * 0,14 + (56,7 – 90,2) 2 * 0,19 + (66,7 – 90,2) 2 * 0,29 + (76,7 – 90,2) 2 *0,14 + (86,7 – 90,2) 2 * 0,08 + (98,3 – 90,2) 2 * 0,06 = 40,32 + 257,6 + 264,92 +213,23 + 160,15 + 25,52 + 0,98 + 3,94 = 966,66

Задание № 8

Даны среднее квадратическое отклонение σ, выборочное среднее и объем выборки nнормального распределенного признака генеральной совокупности. Найти доверительные интервалы для оценки генеральной средней с заданной надежностью γ.

σ n γ
7 112,4 26 0,95

Решение:

Доверительный интервал, в котором с вероятностью γ будет находиться средний интервал совокупности) для нормального распределения случайной величины с известным квадратичным отклонением σ, выборочной средней и объемом выборки n равен.

t – решение уравнения 2Ф (t) = γ, Ф (t) – функция Лапласа. В нашем случае Ф (t) = = 0,475, следовательно, значение Ф (t) соответствует t = 2,13, тогда доверительный интервал будет равен:

К-во Просмотров: 252
Бесплатно скачать Контрольная работа: Основы математики