Контрольная работа: Основы математики
61,7)
[61,7;
71,7)
[71,7;
81,7)
[81,7;
91,7)
[91,7;
104,7]
Рис. 1. Гистограмма относительных частот
Перейдем от составленного интервального распределения к точечному выборочному распределению, взяв за значение признака середины частичных интервалов. Построим полигон относительных частот и найдем эмпирическую функцию распределения, построим ее график:
x i | 26,7 | 36,7 | 46,7 | 56,7 | 66,7 | 76,7 | 86,7 | 98,3 |
ni | 1 | 9 | 14 | 19 | 29 | 14 | 8 | 6 |
wi | 0,01 | 0,09 | 0,14 | 0,19 | 0,29 | 0,14 | 0,08 | 0,06 |
Рис. 2. График интервального распределения.
Рис. 3. График эмпирической функции распределения
=
∑ xi wi = ∑ xi wi
∑ xi wi = 26,7 * 0,01 + 36,7 * 0,09 + 46,7 * 0,14 + 56,7 * 0,19 + 66,7 * 0,29 + 76,7 * 0,14 + 86,7 *0,08 + 98,3 * 0,06 =26,71 + 3, 303 + 6,538 + 10,773 +
+ 19,343 + 10,738 + 6,936 + 5,898 = 90,2
= ∑
= = (26,7 – 90,2)2 * 0,01 +(36,7 – 90,2) 2 *0,09 + (46,7 – 90,2) 2 * 0,14 + (56,7 – 90,2) 2 * 0,19 + (66,7 – 90,2) 2 * 0,29 + (76,7 – 90,2) 2 *0,14 + (86,7 – 90,2) 2 * 0,08 + (98,3 – 90,2) 2 * 0,06 = 40,32 + 257,6 + 264,92 +213,23 + 160,15 + 25,52 + 0,98 + 3,94 = 966,66
Задание № 8
Даны среднее квадратическое отклонение σ, выборочное среднее и объем выборки nнормального распределенного признака генеральной совокупности. Найти доверительные интервалы для оценки генеральной средней
с заданной надежностью γ.
σ | ![]() | n | γ |
7 | 112,4 | 26 | 0,95 |
Решение:
Доверительный интервал, в котором с вероятностью γ будет находиться средний интервал совокупности) для нормального распределения случайной величины с известным квадратичным отклонением σ, выборочной средней и объемом выборки n равен.
t – решение уравнения 2Ф (t) = γ, Ф (t) – функция Лапласа. В нашем случае Ф (t) = = 0,475, следовательно, значение Ф (t) соответствует t = 2,13, тогда доверительный интервал будет равен: