Контрольная работа: Парная и множественная регрессия и корреляция
2.1.2 Регрессия в виде экспоненты имеет вид:
. (13)
Для оценки ее параметров необходимо привести уравнение к линейному виду:
.
Для расчета параметров экспоненциальной прямой можно воспользоваться статистической функцией ЛГРФПРИБЛ MS Excel. Результаты вычислений представлены на рисунке 10.
Рисунок 10 Результаты вычислений параметров экспоненциальной функции
Таким образом, уравнение регрессии в виде экспоненты имеет вид:
.
2.1.3 Регрессия в виде равносторонней гиперболы имеет вид:
,
чтобы оценить параметры a и b, привожу модель к линейному виду, заменив
.
Тогда
.
Результаты замены представлены на рисунке 11.
Рисунок 11 Вспомогательная таблица для расчета параметров гиперболы
Далее с помощью инструмента Регрессия рассчитываю параметры уравнения. Результаты расчета представлены на рисунке 12.
Рисунок 12 Результаты вычислений параметров гиперболической функции
Выберем наилучшую модель, для чего объединим результаты построения парных регрессий в одной таблице 3.
Все уравнения регрессии достаточно хорошо описывают исходные данные.
Таблица 3 Результаты корреляционно-регрессионного анализа
Уравнение регрессии | Коэффициент корреляции | Коэффициент детерминации | F-критерий Фишера |
0,659 | 0,036 | 0,227 | |
0,161 | 0,026 | 0,159 | |
0,179 | 0,032 | 0,201 | |
0,152 | 0,023 | 0,143 |
Предпочтение можно отдать линейной функции, для которой значения коэффициентов корреляции и детерминации и F-критериев Фишера наибольшие.
3. Множественная регрессия
Цель работы – овладеть методикой построения линейных моделей множественной регрессии, оценки их существенности и значимости, расчетом показателей множественной регрессии и корреляции.
Постановка задачи. По данным изучаемых регионов (таблица 1) изучить зависимость общего коэффициента рождаемости () от уровня бедности, % () и среднедушевого дохода, тыс. руб. ().