Контрольная работа: Парная и множественная регрессия и корреляция

2.1.2 Регрессия в виде экспоненты имеет вид:

. (13)

Для оценки ее параметров необходимо привести уравнение к линейному виду:

.

Для расчета параметров экспоненциальной прямой можно воспользоваться статистической функцией ЛГРФПРИБЛ MS Excel. Результаты вычислений представлены на рисунке 10.


Рисунок 10 Результаты вычислений параметров экспоненциальной функции

Таким образом, уравнение регрессии в виде экспоненты имеет вид:

.

2.1.3 Регрессия в виде равносторонней гиперболы имеет вид:

,

чтобы оценить параметры a и b, привожу модель к линейному виду, заменив

.

Тогда

.

Результаты замены представлены на рисунке 11.


Рисунок 11 Вспомогательная таблица для расчета параметров гиперболы

Далее с помощью инструмента Регрессия рассчитываю параметры уравнения. Результаты расчета представлены на рисунке 12.

Рисунок 12 Результаты вычислений параметров гиперболической функции

Выберем наилучшую модель, для чего объединим результаты построения парных регрессий в одной таблице 3.

Все уравнения регрессии достаточно хорошо описывают исходные данные.

Таблица 3 Результаты корреляционно-регрессионного анализа

Уравнение регрессии Коэффициент корреляции Коэффициент детерминации F-критерий Фишера
0,659 0,036 0,227
0,161 0,026 0,159
0,179 0,032 0,201
0,152 0,023 0,143

Предпочтение можно отдать линейной функции, для которой значения коэффициентов корреляции и детерминации и F-критериев Фишера наибольшие.


3. Множественная регрессия

Цель работы – овладеть методикой построения линейных моделей множественной регрессии, оценки их существенности и значимости, расчетом показателей множественной регрессии и корреляции.

Постановка задачи. По данным изучаемых регионов (таблица 1) изучить зависимость общего коэффициента рождаемости () от уровня бедности, % () и среднедушевого дохода, тыс. руб. ().

К-во Просмотров: 516
Бесплатно скачать Контрольная работа: Парная и множественная регрессия и корреляция