Контрольная работа: по Эконометрике 3

N =8.

Y

X1

X2

X3

Y

1

0,2461

0,0117

0,9313

X1

0,2461

1

0,8779

0,0123

X2

0,8779

0,8897

1

-0,2041

X3

0,9313

0,0123

-0,2041

1

Средняя

13,64

0,2134

22,29

24,69

4,250

0,1596

2,520

9,628

уровня ().

Б) - коэффициентов частной корреляции

Y

X1

X2

X3

Y

1

0,3734

-0,0388

0,9473

X1

0,3734

1

0,8483

-0,2322

X2

-0,0388

0,8483

1

-0,1070

X3

0,9473

-0,2322

-0,1070

1

Задание:

1. По значениям линейных коэффициентов парной и частной корреляции выберите неколлинеарные факторы и рассчитайте для них коэффициенты частной корреляции. Произведите окончательный отбор информативных факторов во множественную регрессионную модель.

2. Выполните расчёт бета коэффициентов (b ) и постройте с их помощью уравнение множественной регрессии в стандартизованном масштабе. Проанализируйте с помощью бета коэффициентов (b ) силу связи каждого фактора с результатом и выявите сильно и слабо влияющие факторы.

3. По значениям b -коэффициентов рассчитайте параметры уравнения в естественной форме (a 1 , a 2 и a 0 ). Проанализируйте их значения. Сравнительную оценку силы связи факторов дайте с помощью общих (средних) коэффициентов эластичности -.

4. Оцените тесноту множественной связи с помощью R и R 2 , а статистическую значимость уравнения и тесноту выявленной связи - через F -критерий Фишера (для уровня значимости a=0,05).

5. Рассчитайте прогнозное значение результата, предполагая, что прогнозные значения факторов составят 108,5 процента от их среднего уровня.

6. Основные выводы оформите аналитической запиской.

Решение:

1. Представленные в условии задачи значения линейных коэффициентов парной корреляции позволяют установить, что оборот розничной торговли Y более тесно связан с годовым доходом всего населения X 3 ( ) и с - долей лиц с высшим и незаконченным образованием среди занятых X 2 ( ); наименее тесно результат Y связан с - кредитами, предоставленными в 2000 году предприятиям, организациям, банкам и физическим лицам X 1 . Поэтому, в силу небольшой информативности фактора, предполагаем, что его можно исключить из дальнейшего анализа. Проверим наши предположения с помощью анализа матрицы коэффициентов частной корреляции. Очевидно, что наиболее тесная связь результата Y с годовым доходом всего населения () и долей населения с высшим и незаконченным высшим образованием среди занятых, % () и наименее тесно результат Y связан с - кредитами, предоставленными в 2000 году предприятиям, организациям, банкам и физическим лицам.

(). Поэтому для уточнения окончательного вывода выполним расчёт серии коэффициентов частной корреляции Y с двумя возможными комбинациями факторных признаков: для Y с X 1 и с X 3 , а также для Y c X 2 и X 3 .

Расчёты частных коэффициентов корреляции выполним по следующим формулам:

Как видим, факторы X и X , действительно, тесно связаны с результатом, и между собой сильно взаимодействуют.
Расчёт аналогичных показателей по следующей паре факторов приводит к иным результатам:

В данном случае, межфакторное взаимодействие оценивается как заметное ( ), а фактор слабо связан с результатом. Таким образом, первая из рассмотренных пар факторных признаков (X1 и X3 ) в большей мере отвечает требованиям, предъявляемым МНК к исходным данным и, в частности, к отсутствию межфакторного взаимодействия. Указанные обстоятельства позволяют использовать X1 и X3 в качестве информативных факторов уравнения множественной регрессии.
2. При построении двухфакторной регрессионной модели воспользуемся для упрощения расчётов методом стандартизованных переменных. В этом случае, исходное уравнение приобретает вид: . Выполним расчёт - коэффициентов, используя значения известных по условию линейных коэффициентов парной корреляции.

В рез

К-во Просмотров: 258
Бесплатно скачать Контрольная работа: по Эконометрике 3