Контрольная работа: по Инновационному менеджменту 4

- набора проектов научно-исследовательских работ для финансирования из массы заявок;

- получателей экологических кредитов из многих желающих;

- при выборе инвестиционных проектов для реализации среди представленных и т.д.

Один из наиболее известных методов экспертных оценок - это метод "Дельфи". Методом Дельфи назвали экспертную процедуру прогнозирования научно-технического развития. В первом туре эксперты называли вероятные даты тех или иных будущих свершений. Во втором туре каждый эксперт знакомился с прогнозами всех остальных. Если его прогноз сильно отличался от прогнозов основной массы, его просили пояснить свою позицию, и часто он изменял свои оценки, приближаясь к средним значениям. Эти средние значения и выдавались заказчику как групповое мнение.

Метод сценариев, применяется, прежде всего, для экспертного прогнозирования. Метод сценариев - это метод декомпозиции задачи прогнозирования, предусматривающий выделение набора отдельных вариантов развития событий (сценариев), в совокупности охватывающих все возможные варианты развития. При этом каждый отдельный сценарий должен допускать возможность достаточно точного прогнозирования, а общее число сценариев должно быть обозримо.

Еще один вариант экспертного оценивания - мозговой штурм. Организуется он как собрание экспертов, на выступления которых наложено одно, но очень существенное ограничение - нельзя критиковать предложения других. Можно их развивать, можно высказывать свои идеи, но нельзя критиковать. В ходе заседания эксперты, "заражаясь" друг от друга, высказывают все более экстравагантные соображения. Часа через два записанное на магнитофон или видеокамеру заседание заканчивается, и начинается второй этап мозгового штурма - анализ высказанных идей. Обычно из 100 идей 30 заслуживают дальнейшей проработки, из 5-6 дают возможность сформулировать прикладные проекта, а 2-3 оказываются в итоге приносящими полезный эффект - прибыль, повышение экологической безопасности, оздоровление окружающей природной среды и т.п. При этом интерпретация идей - творческий процесс.

III. Моделирование (математическая имитация ситуации в целях ее исследования).

Методы моделирования делятся на логические, исторические и математические (регрессионный анализ (регрессионные модели); модель авторегрессии; модель Бокса-Дженкинса; системы эконометрических уравнений).

Логические методы основаны на принципах логики и показывают неизбежность наступления какого – либо действия. Исторические – базируются на последовательности развития тех или иных видов техники, математические – основаны на принципах математического моделирования.

Моделирование предполагает конструирование модели на основе предварительного изучения объекта или процесса, выделения его существенных характеристик или признаков. Прогнозирование экономических и социальных процессов с использованием моделей включает разработку модели, ее экспериментальный анализ, сопоставление результатов прогнозных расчетов на основе модели с фактическими данными состояния объекта или процесса, корректировку и уточнение модели.

Рассмотрим некоторые методы математического моделирования:

1. Регрессионный анализ — метод моделирования измеряемых данных и исследования их свойств. Данные состоят из пар значений зависимой переменной (переменной отклика) и независимой переменной (объясняющей переменной). Регрессионная модель есть функция независимой переменной и параметров с добавленной случайной переменной. Параметры модели настраиваются таким образом, что модель наилучшим образом приближает данные. Критерием качества приближения (целевой функцией) обычно является среднеквадратичная ошибка: сумма квадратов разности значений модели и зависимой переменной для всех значений независимой переменной в качестве аргумента.

2. Модель авторегрессии — скользящего среднего (англ. autoregressive moving-average model, ARMA) — одна из математических моделей, использующихся для анализа и прогнозирования стационарных временных рядов в статистике. Модель ARMA обобщает две более простые модели временных рядов — модель авторегрессии (AR) и модель скользящего среднего (MA).

3. В статистике и обработке сигналов модель авторегрессионного скользящего среднего (autoregressive moving average, ARMA), называемая иногда моделью Бокса-Дженкинса, применяется для исследования временных рядов.

Имея временной ряд, модель авторегрессионного скользящего среднего позволяет объяснить и, возможно, предсказать будущие значения ряда. Модель состоит из двух частей: авторегрессионной (AR) части и скользящего среднего(MA). Для упоминания модели обычно используется обозначение ARMA(p,q), где p — порядок регрессионной части, а q — порядок скользящего среднего.

Модель авторегрессии-скользящего среднего (АРСС), наиболее полно и экономно выражающая автокорреляционные свойства стационарного временного ряда xt. Применение модели АРСС возможно и в случае нестационарных рядов, характеризующихся наличием полиномиального тренда. Тогда от нестационарного ряда переходят к стационарному путем построения модели АРСС для разностей исходного ряда соответствующего порядка d. Порядок разностей d зависит от порядка полинома. Такую модель называют интегрированной (или проинтегрированной) моделью авторегрессии скользящего среднего.

К достоинствам математических моделей относят четкое изложение параметров, возможность быстрого проведения расчетов, к недостаткам – невозможность учета ряда факторов, особенно экологических, отсутствие реального учета перехода количественных изменений в качественные, трудность в описании всех параметров.

Инновационная деятельность является наиболее сложным и непредсказуемым объектом прогнозирования. При недостатке информации по развитию отдельных направления науки и техники часто прибегают к методам экспертных оценок.

2. Ожидаемые результаты инвестиционного проекта (запуск новой технологической линии) представлены в таблице

Показатель

Год

1-й

2-й

3-й

1. Объем выпуска продукции после освоения технологической линии, шт.

10000

15000

20000

2. Оптовая цена (без НДС) единицы продукции, руб.

200

180

175

3. Себестоимость единицы продукции, руб.

150

140

135

4. В том числе амортизация, руб/шт.

15

10

7,5

5. Налоги и прочие отчисления из прибыли, руб.

250000

300000

350000

Определите сумму приведенных (дисконтированных) эффектов при норме дисконта, равной 0,3.

Решение:

1. найдем объем реализации, руб.:

Rt = Vt Zt

К-во Просмотров: 192
Бесплатно скачать Контрольная работа: по Инновационному менеджменту 4