Контрольная работа: по курсу эконометрика
4. сделать вывод о силе связи результата с каждым из факторов.
Коэффициенты эластичности факторов говорят о том, что при отклонении величины соответствующего фактора от его средней величины на 1% (% как относительная величина) и при отвлечении от сопутствующего отклонения другого фактора входящего в уравнение множественной регрессии, цена акции отклонится от своего среднего значения на 0,403% при действии фактора (доходность капитала) и на 1,188% при действии фактора (уровень дивидендов).
Таким образом сила влияния фактора на результат (цену акции) больше, чем фактора , а сами факторы действуют в одном и том же положительном направлениии.
Количественно фактор приблизительно в три раза сильнее влияет на результат чем фактор . ()
Анализ уравнения регрессии по стандартизованным коэффициентам показывает, что второй фактор влияет сильнее на результат, чем фактор (), т.е. при учете вариации факторов их влияние более точно.
5. Определить парные и частные коэффициенты корреляции, а также множественный коэффициент корреляции.
Парные коэффициенты корреляции определяются по формулам:
Частные коэффициенты корреляции определяются по ф-ле:
Множественный коэффициент корреляции определяется по формуле:
Матрица парных коэффициентов корреляции
Из таблицы видно, что в соответствии со шкалой Чеддока связь между и можно оценить как слабую, между и - как высокую, между и связь практически отсутствует.
Таким образом, по построенной модели можно сделать вывод об отсутствии в ней мультиколлениарности факторов.
Частные коэффициенты корреляции рассчитывались как оценки вклада во множественной коэффициент корреляции каждого из факторов ( и ). Они характеризуют связи между результативными признаками (ценой акции) и соответствующим фактором x при
Причина различий между значениями частных и парных коэффициентов корреляции состоит в том, что частный коэффициент отражает долю вариации результативного прихнака (цены акции), дополнительно объясняемой при включении фактора (или ) после другого фактора (или ) в уравнение регрессии, не объяснимой ранее включенным фактором (или ).
6 .