Контрольная работа: по Математическому моделированию

2. Найти множество Парето следующей двухкритериальной задачи.

, ,

при условии . Значения функций заданы таблицей

x 1 2 3 4 5 6 7
-2 -4 -6 -4 -6 -8 -6
12 12 12 10 10 10 6

Решение.

Решим вопрос нахождения множества Парето данной задачи геометрически. Для этого изобразим на графике множество, состоящее из точек

=

С помощью графика найдем все точки с максимальным значением координаты . В данном случае это одна точка, имеющая координаты (-2,12). Она войдет во множество оптимальных по Парето исходов. Далее исключим из рассмотрения все точки, координаты которых не превосходят, а координаты больше или равны координатам найденной точки (-2,12) ( это (-4,12) и (-6,12) ). Снова из оставшихся точек выберем все с наибольшим значением . Это точка с координатами (-4,10). Из оставшихся две точки (-6,10) и (-8,10) нам не подходят, поскольку их координаты меньше первой координаты выбранной точки (-4,10), а координаты равны второй координате этой точки. Значит, соответствующие им стратегии являются доминируемыми. Что же касается точки (-6, 6), то она войдет во множество оптимальных по Парето точек. Окончательно получили, что множество Парето данной задачи состоит из трех точек - (-2,12), (-4,10), (-6, 6). Они отвечают стратегиям под номерами 1, 4 и 7 соответственно. Таким образом, .

3. Геометрически решить задачу линейного программирования:

,

Решение.

    Строим область допустимых решений, т.е. геометрическое место точек, в котором одновременно удовлетворяются все ограничения данной ЗЛП. Каждое из неравенств системы ограничений нашей задачи геометрически в системе координат (,) определяет полуплоскость соответственно с граничными прямыми.

Первому ограничению соответствует прямая, пересекающая координатные оси в точках с координатами ( 0, 6 ) и ( 6, 0 ).

Второму ограничению соответствует прямая, пересекающая координатные оси в точках с координатами ( 0, -1 ) и ( 1, 0 ).

Третьему ограничению соответствует прямая, пересекающая координатные оси в точке с координатами ( 1, 0 ) и проходящая параллельно оси .

Четвертому ограничению соответствует прямая, пересекающая координатные оси в точках с координатами ( 0, 6 ) и ( 3, 0 ).

Пятому ограничению соответствует прямая, пересекающая координатные оси в точках с координатами ( 0, 4 ) и ( -8, 0 ).

Шестому ограничению соответствует прямая, пересекающая координатные оси в точке с координатами ( 0, 1 ) и проходящая параллельно оси .

Области, в которых выполняются соответствующие ограничения в виде неравенств, указаны на рисунке стрелками, направленными в сторону допустимых значений переменных.

Полученная область допустимых решений выделена на рисунке серым цветом.

    Вектор градиента v определяется координатами ( 0.5, 2 ). Он перпендикулярен линиям уровня и указывает направление возрастания целевой функции. На рисунке красным цветом изображены линии уровня , заданные уравнениями и , т. е. когда целевая функция принимает значение 0 и 10 соответственно.

3. По графику видно, что касание линии уровня ( ее уравнение ), перед выходом из области допустимых решений, произойдет в точке пересечения прямых и. Нетрудно подсчитать, что эта точка имеет координаты .

4. В этой точке значение целевой функции будет наибольшим, т.е.

.

4. Перейти к задаче с ограничениями :

Решение.

Для начала попытаемся выразить одни переменные системы через определенный набор других переменных. С этой целью будем рассматривать расширенную матрицу системы ограничений и путем элементарных преобразований этой матрицы, выделим в ней единичную подматрицу :

К-во Просмотров: 1153
Бесплатно скачать Контрольная работа: по Математическому моделированию