Контрольная работа: Потрійний інтеграл
7. (Середнє значення функції.) Якщо функція неперервна в обмеженій замкненій області , яка має об'єм , то в цій області існує така точка , що
.
Величина
називається середнім значенням функції в області .
2. Обчислення потрійного інтеграла
Обчислення потрійного інтеграла зводять до обчислення повторних, тобто до інтегрування за кожною змінній окремо.
Нехай область обмежена знизу і зверху поверхнями і , а з боків циліндричною поверхнею, твірні якої паралельні осі . Позначимо проекцію області на площину через (рис. 1) і вважатимемо, що функції і неперервні в .
Рисунок 1 – Область
Якщо при цьому область є правильною, то область називається правильною у напрямі осі . Припустимо, що кожна пряма, яка проходить через кожну внутрішню точку паралельно осі , перетинає межу області у точках і . Точку назвемо точкою входу в область , а точку – точкою виходу з області , а їхні аплікати позначимо відповідно через і . Тоді , і для будь-якої неперервної в області функції має місце формула
.(5)
Зміст формули (5) такий. Щоб обчислити потрійний інтеграл, потрібно спочатку обчислити інтеграл за змінною , вважаючи та сталими. Нижньою межею цього інтеграла є апліката точки входу , а верхньою – апліката точки виходу . Внаслідок інтегрування отримаємо функцію від змінних та .
Якщо область , наприклад, обмежена кривими і , де і – неперервні функції, тобто
, то, переходячи від подвійного інтеграла до повторного (п. 1.3), отримаємо формулу
,(6)
яка зводить обчислення потрійного інтеграла до послідовного обчислення трьох визначених інтегралів. Порядок інтегрування може бути й іншим, тобто змінні і у правій частині формули (6) за певних умов можна міняти місцями.
Якщо, наприклад, область правильна в напрямі осі :
,
де – неперервні функції, то
.
Зокрема, якщо областю інтегрування є паралелепіпед:
,
то
.(7)
У цьому разі інтегрування виконується в будь-якому порядку, оскільки область правильна у напрямі всіх трьох координатних осей .
3. Заміна змінних в потрійному інтегралі
Заміну змінної в потрійному інтегралі виконують за таким правилом: якщо обмежена замкнена область взаємно однозначно відображується на область за допомогою неперервно диференційовних функцій , , , якобіан в області не дорівнює нулю: