Контрольная работа: Проблема дискретного логарифмування
В пошуках криптографічних алгоритмів з відкритим розповсюдженням ключів з експоненціальною складністю криптоаналізу спеціалісти зупинилися на криптографічних перетвореннях, що виконуються в групі точок ЕК.
Відповідно до прогнозів ці перетворення ще довго забезпечуватимуть необхідний рівень стійкості. Розглянемо основні задачі криптоаналізу для систем, в яких перетворення здійснюються в групі точок ЕК, методи їх розв'язання та дамо оцінку стійкості для відомих нам методів криптоаналізу.
Під час аналізу стійкості необхідно розглянути дві проблеми стійкості – розв’язання задачі дискретного логарифму та задачі Діффі-Хеллмана.
Проблема дискретного логарифму формується у наступному вигляді. Нехай задано точку на еліптичній кривій , де (просте число) або (просте число, натуральне, ). Відомо також значення відкритого ключа , причому
. (1)
Необхідно знайти конфіденційний (особистий ) ключ .
Проблема Діффі – Хеллмана формується у наступному вигляді. Нехай дано ЕК , відомо значення точки , а також відкритий ключ . Необхідно знайти загальний секрет
, (2)
де та – особисті ключі відповідно першого та другого користувачів.
Насьогодні для аналізу стійкості та проведення криптоаналізу знайшли розповсюдження декілька методів Полларда - та оптимальний .
Поллард запропонував замість детерміністського псевдоймовірнісний алгоритм розв’язання в полі .
Це дозволило істотно знизити вимоги до обсягу пам'яті при практично тій же стійкості алгоритму. Ідея методу заснована на випадковому пошуку двох співпадаючих точок серед точок криптосистеми.
У теорії ймовірностей добре відомі задачі про випадкові блукання. Одна із задач ставиться так. Є ящиків і куль, які випадково розміщені по ящиках.
Процедура закінчується при першому влученні кулі у вже зайнятий ящик. Потрібно визначити медіану розподілу ймовірностей
Більш простою моделлю є задача про співпадаючі дні народження. Якщо - число днів у році, то скільки чоловік з рівноймовірними днями народження в році потрібно відібрати, щоб з імовірністю дні народження хоча б двох чоловік збіглися?
Очевидно, що ймовірність такої події дорівнює
При неважко отримати наближене значення цієї імовірності
Приймаючи , отримаємо оцінку числа . Інакше кажучи, щоб при випадковому переборі великої множини із чисел з імовірністю 50% двічі з'явилося те саме число, буде потрібно в середньому порядку спроб. Збіг елементів або точок в аналізі прийнято називати колізією. Нехай , де генератор криптосистеми має великий простий порядок . Алгоритм - методу в застосуванні до еліптичних кривих полягає в послідовному обчисленні точок
де - якась міра координати точки - три рівноймовірні області, у які може потрапити ця міра. Виберемо випадкові значення й визначимо початкову точку як Ітераційна послідовність обчислень дає послідовність , таку що
На кожному кроці обчислене значення порівнюється з попереднім аж до збігу (колізії) або
.
Алгоритм разом з колізією дозволяє скласти рівняння
з якого визначається значення дискретного логарифма
.
--> ЧИТАТЬ ПОЛНОСТЬЮ <--