Контрольная работа: Расчет электрических цепей синусоидального тока
Комплексный ток нейтрального провода
А.
Действующее значение токов:
= 21.17 А; = 4.49А; = 12.7 А; = 26.18 А.
Определяем полную, активную и реактивную мощности каждой фазы:
ВА
ВА
ВА
Отсюда
Sa =2688.89 ВА; Sb =570.4 ВА; Sс =1613.33 ВА; Рa =0 Вт; Рb =403.33.41 Вт; Рс =0 Вт;
Qa = -2688.89 вар; Qb = -403.33 вар; Qс =1613.33 вар
Полная активная и реактивная мощности всей цепи:
403.33-j1478.89 В·А
Порядок построения векторной диаграмы /рис./следующий.
В выбранном масштабе строим фазные и линейные напряжения, совмещая вектор напряжения с вещественной осью комплексной плоскости.
В масштабе, выбранном для тока, строим векторы токов, используя фазовые сдвиги (показательная форма записи) или координаты активной и реактивной составляющей (алгебраическая форма записи).
Геометрическая сумма векторов линейных токов представляет собой вектор тока нейтрального провода.
Задача 4
В трехфазную сеть с напряжением 220 В включен треугольником несимметричный приемник, сопротивления которого равны: 3 Ом; 4 Ом; 15 Ом; 15 Ом; 19 Ом; /рис.4/. Определить токи в линейных проводах, активную и реактивную мощности цепи. Построить векторную диаграмму.
Рис. 4
Решение. Принимаем начальную фазу напряжения равной нулю, т.е. совмещаем вектор его напряжения с вещественной осью комплексной плоскости.
Тогда комплексные линейные напряжения:
В; В; В
Комплексные сопротивления фаз приемника:
Ом; Ом;
Ом
Комплексные фазные токи:
А;