Контрольная работа: Решение матриц
Умножение
Умножение матриц (Произведение матриц):
Операция умножения двух матриц вводится только для случая, когда число столбцов первой матрицы равно числу строк второй матрицы .
Это условие не выполняется, произведение АВ не существует.
Произведение матрицы и вектора А b :
Скалярное произведение векторов ( b ,с):
Найти определитель матрицы А:
В частности, формула вычисления определителя матрицы такова:
= a 11 a 22 a 33 − a 11 a 23 a 32 − a 12 a 21 a 33 + a 12 a 23 a 31 + a 13 a 21 a 32 − a 13 a 22 a 31
=2*(-4)*5 – 2*4*2 – (-2)*5*5 + (-2)*4*(-1) +(-1)*5*2 – (-1)*(-4)*(-1) = -40 – 16 +50 + 8 – 10 + 4 = -4
Найти обратную матрицу А-1 :
Решение .
Определитель введенной Вами матрицы равен:
Определитель не равен нулю, следовательно обратная матрица существует.
Допишем к исходной матрице единичную матрицу справа.
Начнем приведение левой квадратной матрицы к единичному виду. При помощи элементарных преобразований уберем все коэффициенты ниже главной диагонали.
Вычтем 1 - ую строку из всех строк, которые находятся ниже нее. Это действие не противоречит элементарным преобразованиям матрицы.
Вычтем 2 - ую строку из всех строк, которые находятся ниже нее. Это действие не противоречит элементарным преобразованиям матрицы.
Приведем все коэффициенты на главной диагонали матрицы к 1. Поделим каждую строку матрицы на коэффициент этой строки находящийся на главной диагонали, если он не равен 1.
Приведем все коэффициенты выше главной диагонали к 0, при помощи элементарных преобразований.
--> ЧИТАТЬ ПОЛНОСТЬЮ <--