Контрольная работа: Решение матриц

Элементарными преобразованиями матрицы называются следующие преобразования: 1) умножение строки матрицы на число, отличное от нуля; 2) прибавление к одной строке матрицы другой строки; 3) перестановка строк; 4) вычеркивание (удаление) одной из одинаковых строк (столбцов); 5) транспонирование матрицы ;

Те же операции, применяемые для столбцов матрицы , также называются элементарными преобразованиями. С помощью элементарных преобразований можно к какой-либо строке или столбцу матрицы прибавить линейную комбинацию остальных строк (столбцов).

Начинаем решать вот такую систему уравнений методом Гаусса


Определитель основной матрицы равен -4

Хотим сделать элемент [1,1] равным 1. Разделили всю строку 1 на элемент [1,1]=2.

Сделали в 1 строке элемент 1 единичным.

Обнулим 1 столбец: Из 2 строки вычли 1 строку , умноженную на элемент [1,2]=5.

Из 3 строки вычли 1 строку , умноженную на элемент [1,3]=-1.

Преобразование 1 столбца сделали.

Хотим сделать элемент [2,2] равным 1. Разделили всю строку 2 на элемент [2,2]=1.

Сделали в 2 строке элемент 2 единичным.

Обнулим 2 столбец: Из 1 строки вычли 2 строку , умноженную на элемент [2,1]=-1.

Из 3 строки вычли 2 строку , умноженную на элемент [2,3]=1.

Преобразование 2 столбца сделали.

Хотим сделать элемент [3,3] равным 1. Разделили всю строку 3 на элемент [3,3]=-2.

Сделали в 3 строке элемент 3 единичным.

Из 1 строки вычли 3 строку , умноженную на элемент [3,1]=6.

Из 2 строки вычли 3 строку , умноженную на элемент [3,2]=6.5.

Преобразование 3 столбца сделали.

К-во Просмотров: 326
Бесплатно скачать Контрольная работа: Решение матриц