Контрольная работа: Решение задач по теоретической механике
Знак « - » соответствует случаю, когда , а знак «+» - случаю, когда .
Подставляя (5) и (6) в (1), получим
(7)
Выразим из второго уравнения системы (7) величину нормальной реакции и подставим ее в первое уравнение. В результате получим
при ; (8)
при . (9)
где
Рассмотрим промежуток времени , в течении которого тело 1 движется вправо . Из (8) следует, что
,
где С- постоянная интегрирования, определяемая из начального условия: при
.
При скорость тела 1 обращается в ноль, поэтому.
Найдем значения и :
Т.е. , . Значит, тело при начинает двигаться в обратном направлении. Это движение описывается дифференциальным уравнением (9) при начальном условии: ; (10)
Интегрируя (9) с учетом (10), получим, при
(11)
При получим из (11) искомое значение скорости тела 1 в момент, когда
.
Точное решение задачи. Воспользовавшись методикой, изложенной выше, получим дифференциальное уравнение движения тела 1:
при (12)
; при , (13)
где
Из (12) и учитывая, чтополучаем, при
откуда или
Из (13) и учитывая, чтополучаем, при