Контрольная работа: Розв’язання лінійних задач методами лінійного програмування

Таким чином, в таблиці5 отримали початковий опорний план, транспортні витрати за яким складають:

Недоліком використаного методу знаходження опорного плану є ігнорування величини тарифів на перевезення продукту.

Для визначення оптимального плану перевезень використаємо метод потенціалів. Для цього кожному виробнику Аі (кожному рядку) ставимо у відповідність деяке число а кожному споживачу Ві (кожному стовпчику)– деяке число На основі таблиці5 складемо таблицю6, в якій додамо один стовпчик і один рядок для написання величини параметрів і . Їх знаходимо використовуючи першу умову оптимальності транспортної задачі: (для кожної зайнятої клітини сума потенціалів повинна дорівнювати вартості одиниці перевезення, що записана в цій клітині).

Таблиця6– Перевірка оптимальності опорного плану

Виробник Споживач Запаси продукту
8 3 3 4 0 60 0
40 20
5 2 7 5 0 20 -1
10 10
5 4 8 2 0 30 0
20 10
7 1 5 7 0 20 5
5 15
Потреба в продукті 40 30 30 15 15 130 ×
8 3 8 2 -5 × ×

Систему потенціалів можна побудувати лише для невирожденого опорного плану. Такий план містить m+n-1 лінійно незалежних рівнянь виду з m+n невідомими (де m– кількість постачальників, n– кількість споживачів). Рівнянь на одне менше, ніж невідомих, тому система є невизначеною і для її розв’язку одному невідомому (нехай ним буде u1 ) придамо нульове значення.

Для того, щоб план був оптимальним, повинна виконуватись умова: для кожної незайнятої клітини сума потенціалів повинна бути менша або дорівнювати вартості одиниці перевезення, що стоїть в цій клітині: тобто Робимо перевірку для всіх вільних клітин:

З розрахунків бачимо, що умова оптимальності не виконується для клітин, А1 В3 , А2 В1 , А3 В1 , А4 В1 , А4 В2 , і А4 В3 . Клітину, в якій додатне число отримали максимальним (А2 В3 , оскільки max(5;2;3;6;7;8)=8) зробимо зайнятою, для цього побудуємо цикл і отримуємо таблицю7.

Таблиця7– Другий крок пошуку оптимального рішення

Виробник Споживач Запаси продукту
8 3 3 4 0 60 0
40 20
5 2 7 5 0 20 -1
10 10
5 4 8 2 0 30 0
15 15
7 1 5 7 0 20 -3
5 15
Потреба в продукті 40 30 30 15 15 130 ×
8 3 8 2 3 × ×

Транспортні витрати при такому плані перевезення складають:

Перевірка всіх вільних клітин:

Отримали від’ємні значення у всіх клітинах окрім А1 В3 (5), А1 В5 (3), А2 В1 (2), А2 В5 (2), А3 В1 (3) і А3 В5 (3). Максимальне значення max(5;3;2;2;3;3)=5в клітині А1 В3 , тому заповнюємо і цикл будуємо для неї (цикл показано в таблиці7, результат дій в таблиці8).

Таблиця8– Третій крок пошуку оптимального рішення

Виробник Споживач Запаси продукту
8 3 3 4 0 60 -
40 10 10
5 2 7 5 0 20 -1
20
5 4 8 2 0 30 5
15 15
7 1 5 7 0 20 2
5 15
Потреба в продукті 40 30 30 15 15 130 ×
8 3 3 -3 -2 × ×

Транспортні витрати:

тобто при такому плані перевезення товару транспортні витрати знизилися на 50грн. в порівнянні з попереднім планом перевезення. Але, щоб визначити є отриманий план оптимальним чи ні, виконаємо перевірку.

Перевірку всіх вільних клітин зобразимо в таблиці9, в якій для всіх вільних клітин запишемо різницю між сумою потенціалів і транспортними витратами в клітині.

Таблиця9– Перевірка плану отриманого в результаті третього кроку пошуку оптимального рішення задачі

- - - -7 -2
2 - -5 -9 -3
8 4 - - 3
3 4 - -8 -

З таблиці9 видно, що додатне значення отримали для клітин А2 В1 (2), А3 В1 (8), А3 В2 (4), А3 В5 (3), А4 В1 (3) і А4 В2 (4). Максимальне значення max(2;8;4;3;3;4)=8в клітині А3 В1 , тому заповнюємо і цикл будуємо для неї (цикл показано в таблиці8, результат дій в таблиці10).


Таблиця1– Четвертий крок пошуку оптимального рішення задачі

Виробник Споживач Запаси продукту
8 3 3 4 0 60 0
25 10 25
5 2 7 5 0 20 -1
20
5 4 8 2 0 30 -3
15 15
7 1 5 7 0 20 2
5 15
Потреба в продукті 40 30 30 15 15 130 ×
8 3 3 5 -2 × ×

Транспортні витрати:

що на 120грн. економніше попереднього варіанту розвезення продукції від постачальників до споживачів.

Перевірка всіх вільних клітин наведена в таблиці11.

Таблиця11– Різниця між сумою потенціалів і транспортними витратами для вільних клітин

- - - 1 -2
2 - -5 -1 -3
- -4 -8 - -5
3 4 - 0 -

План, зображений в таблиці10 не є оптимальним, оскільки отримали додатні значення в клітинах А1 В4 (1), А2 В1 (2), А4 В1 (3), А4 В2 (4). Заповнюємо клітину А4 В2 і будуємо опорний план (таблиця12).

К-во Просмотров: 240
Бесплатно скачать Контрольная работа: Розв’язання лінійних задач методами лінійного програмування