Контрольная работа: Системи числення
студента групи Пзс-503
Михайлуса Михайла Геннадійовича
2008 р.
1. Принципи побудови систем числення, основні поняття
У числової інформації в персональних комп’ютерах є такі характеристики:
1. система числення - двійкова, десяткова та інші;
2. вид числа - дійсні, комплексні та масиви;
3. тип числа - змішані, цілі та дробові;
4. форма представлення числа (місце розташування коми) - з природною (змінною), з фіксованою та з плаваючою комами;
5. розрядна сітка та формат числа;
6. діапазон і точність подання числа;
7. спосіб кодування від’ємних чисел - прямий, обернений чи доповняльний код;
8. алгоритм виконання арифметичних операцій.
Системи числення — це сукупність прийомів та правил запису чисел за допомогою цифр чи інших символів. Запис числа у деякій системі числення називається його кодом.
Усі системи числення поділяють на позиційні та непозиційні .
Непозиційна система числення має необмежену кількість символів. Кількісний еквівалент кожного символу постійний і не залежить від позиції. Найвідомішою непозиційною системою числення є римська. В якій використовується сім знаків: I -1, V - 5, X - 10, L - 50, C - 100, D - 500, M - 1000. Недоліки непозиційної системи числення: відсутність нуля, складність виконання арифметичних операцій. Хоча римськими числами часто користуються при нумерації розділів у книгах, віків в історії та інше.
Позиційна система числення має обмежену кількість символів і значення кожного символу чітко залежить від її позиції у числі. Кількість таких символів q, називають основою позиційної системи числення. Головна перевага позиційної системи числення - це зручність виконання арифметичних операцій.
У системах числення з основою меншою 10 використовують десяткові цифри, а для основи більшої 10 добавляють букви латинського алфавіту.
У позиційних системах числення значення кожного символу (цифри чи букви) визначається її зображенням і позицією у числі.
Окремі позиції в записі числа. називають розрядами , а номер позиції - номером розряду. Число розрядів у записі числа, називається його розрядністю і зберігається з довжиною числа.
Позиційні системи числення діляться на однорідні та неоднорідні .
Неоднорідні системи числення - це такі позиційні системи числення, де для кожного розряду числа основа системи числення не залежить одна від одної і може мати будь-яке значення.
Прикладом є двійково-п’ятиркова система числення (система зі змішаними основами). Вони використовуються у спеціалізованих ЕОМ ранніх поколінь.
Однорідна позиційна система числення - це така система числення, для якої множина допустимих символів для всіх розрядів однакова. Причому, якщо вага в розряді числа складає ряд геометричної прогресії з знаменником (основою р ), то це однорідна позиційна система числення з природною порядковою вагою. У даній позиційній системі числення з природною порядковою вагою число може бути представлене у вигляді поліному:
де - основа системи числення;
- вага позиції;
- цифри в позиціях числа;
- номер розрядів цілої частини;
- номер розрядів дробової частини.
Система числення з основою 10 - десяткова система . Для її зображення використовують цифри: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Число десять є складеним. Кожне десяткове число можна розкласти по ступенях основи десяткової системи числення. Наприклад, число 5213,6 можна представити як поліном, кожен член якого є добутком коефіцієнта на основу системи числення в деякій степені:
--> ЧИТАТЬ ПОЛНОСТЬЮ <--