Контрольная работа: Складність деяких методів експоненціювання точки кривої

Найпоширенішою операцією у всіх криптографічних алгоритмах є - кратне додавання точки , позначуване як

Цю операцію звичайно називають скалярним множенням, або, звертаючись до термінології мультиплікативної групи, експоненціюванням точки кривої.

З метою підвищення продуктивності під час обчислення точки багатьма авторами запропоновано різні методи. Дамо стислий опис й оцінку складності найпоширеніших з них.

Підхід до розрахунку точки може відрізнятися залежно від того, чи є точка фіксованою (заздалегідь відомою) або довільною точкою. У першому випадку завжди можна користуватися передрозрахунками точок, наприклад, , які зберігаються в пам'яті. Двійкове подання числа дозволяє селектрувати ті з них, які в результаті підсумовування утворять точку . У другому, більш загальному випадку, всі обчислення доводиться проводити в реальному часі.

Нехай порядок і число подано у двійковій системі

Розглянемо спочатку основні алгоритми експоненціювання при невідомій заздалегідь точці

експоненціювання алгоритм скалярне множення

Алгоритм подвоєння-додавання

Це найприродніший і найпростіший метод, при якому обчислення здійснюються за формулою

Ці обчислення на основі методу розрахунку ліворуч-праворуч здійснюються за допомогою наступного алгоритму.

Алгоритм 1.

Вхід:

Вихід:

1.

2.

2.1

2.2

3. .

Реалізація методу вимагає операцій подвоєння точки й додавань , де - вага Хеммінга двійкового вектора (число одиниць цього вектора). Оскільки в середньому число одиниць випадкового вектора дорівнює , загальне число групових операцій оцінюється величиною

Алгоритм подвоєння-додавання-віднімання

Попередній алгоритм можна вдосконалити, якщо вести додаткову операцію-віднімання точки. Цей метод запропонований в 1990 році Ф. Морейном і Дж. Олівосом. Наприклад, число у двійковій системі має вага у , але його можна подати як з вагою Ця ідея знижує вагу Хеммінга і, відповідно, число групових операцій. Реалізувати алгоритм подвоєння - додавання віднімання можна переходом від двійкового подання числа до трійкового з коефіцієнтами Одне із властивостей подання - відсутність у ньому суміжних пар ненульових елементів, завдяки чому зростає питома вага нульових елементів . Для розрахунку використовується наступний алгоритм.

Алгоритм 2.

Вхід: позитивне ціле число

Вихід:

1.

2.

2.1

2.2

2.3

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 189
Бесплатно скачать Контрольная работа: Складність деяких методів експоненціювання точки кривої