Контрольная работа: Складність деяких методів експоненціювання точки кривої
Обмінюючи час обчислень на пам'ять, можна й далі підвищувати продуктивність експоненціювання точки кривої. Наприклад, для кожного вікна шириною можна заздалегідь розрахувати точок, при цьому на згадку рийдеться записати точок. Операція подвоєння в цьому випадку не використовується, а складність оцінюється числом додавань. Цей алгоритм назвемо алгоритмом максимальної пам'яті. У табл.13.1 дані для порівняння величини пам'яті й тимчасової складності (числа групових операцій) алгоритму 6 й алгоритму максимальної пам'яті при . В обох випадках зі збільшенням ширини вікна збільшується пам'ять і знижується число групових операцій. Очевидно, що останній алгоритм за наявності більших резервів пам'яті дозволяє істотно прискорити операцію експоненціювання фіксованої точки
Таблиця 1 - Об'єм пам'яті й тимчасова складність (число групових операцій) алгоритму 6 й алгоритму максимальної пам'яті при
Метод | W = 3 | W = 4 | W = 5 | W = 6 | ||||
M | S | M | S | M | S | M | S | |
Алгоритм 6 | 14 | 900 | 30 | 725 | 62 | 632 | 126 | 529 |
Алгоритм максимальної пам'яті. | 469 | 58 | 750 | 46 | 1280 | 38 | 2079 | 33 |