Контрольная работа: Статистические расчеты содержания влаги

`x = n Ö x1 *x2 * ... *xn

.

``x = å fi Ö x1 f1 *x2 f2 * ... *xn fn

1

Средняя арифметическая

`x = å x i .

n

`x = å x i *f i .

åfi

2

Средняя квадратическая

.

`x = Ö å x i 2 *f i .

åfi

.

`x = Ö å x i 2

n

1.3.1. Средняя арифметическая величина.

1). Средняя арифметическая не взвешенная величина – наиболее характерная форма средней, на примере которой можно выявить все свойства средней. Если показатель степени равен 1, то получаем следующую форму средней. Такая средняя величина называется средней арифметической простой (невзвешенной).

`x = å x i

n

xi – значение изучаемого признака для i-того элемента совокупности;

n – число наблюдений (число единиц совокупности).

Данная форма средней величины является наиболее распространенной. Она получается путем соотношения суммарного объема индивидуальных значений признака каждого элемента совокупности и числа элементов совокупности. Средняя арифметическая невзвешенная применяется в том случае, если имеются сведения об объеме осредняемого признака.

2) Средняя арифметическая взвешенная величина.

Если имеются сведения о количестве или доле единиц совокупности с тем или иным значением осредняемого признака, то рассчитывается средняя арифметическая взвешенная:

`x = å x i *f i

åfi

xi – индивидуальные значения осредняемого признака у отдельных единиц совокупности;

fi – значения признака-веса для каждой единицы совокупности.

В зависимости от осредняемых данных выделяют несколько случаев применения средней арифметической взвешенной величины:

- расчет средней арифметической взвешенной в случае, если осредняемый признак выражен в абсолютных величинах, а признак-вес представлен первичным показателем;

К-во Просмотров: 501
Бесплатно скачать Контрольная работа: Статистические расчеты содержания влаги