Контрольная работа: Статистические расчеты содержания влаги

2) Средняя геометрическая взвешенная величина.

Данная форма средней применяется когда темпы роста остаются неизменными в течение нескольких периодов. Формула средней геометрической взвешенной определяется следующим образом:

.

`x = å fi Ö x1 f1 *x2 f2 * ... *xn fn


хi – количество периодов, в течение которых темпы роста оставались неизменными;

По охвату совокупности выделяют групповую среднюю и общую среднюю. Такие виды средних применяются, когда существует необходимость разбить совокупность на группы для более полного изучения. Тогда одной из характеристик выделенных групп будет служить групповая средняя. Она рассчитывается по тем же принципам, что и общая средняя, т.е. объем группы исследуется как объем отдельной совокупности. Причем, среднее значение групповых средних, взвешенных по числу единиц или по суммарному значению признака-веса в группе будет равно общей средней.

2. Уравнение тренда на основе линейной зависимости.

2.1. Основные элементы временного ряда.

Можно построить эконометрическую модель, используя два типа исходных данных:

-данные, характеризующие совокупность различных объектов в определённый момент времени.

-данные, характеризующие один объект за ряд последовательных моментов времени.

Модели, построенные по данным первого типа, называются пространственными . Модели, построенные на основе второго типа данных, называются временными рядами .

Временной ряд – это совокупность значений какого-либо показателя за несколько последовательных моментов или периодов времени. Каждый уровень временного ряда формируется под воздействием большого числа факторов, которые условно можно подразделить на три группы:

-факторы, формирующие тенденцию ряда.

-факторы, формирующие циклические колебания ряда.

-случайные факторы.

При различных сочетаниях в изучаемом явлении или процессе этих факторов зависимость уровней ряда от времени может принимать различные формы.

Во-первых, большинство временных рядов экономических показателей имеют тенденцию, характеризующую совокупное долговременное воздействие множества факторов на динамику изучаемого показателя. Очевидно, что эти факторы, взятые в отдельности, могут оказывать разнонаправленное воздействие на исследуемый показатель. Однако в совокупности они формируют его возрастающую или убывающую тенденцию. На рис. 1. показан временной ряд, содержащий возрастающую тенденцию.


Во-вторых, изучаемый показатель может быть подвержен циклическим колебаниям. Эти колебания могут носить сезонный характер, поскольку экономическая деятельность ряда отраслей экономики зависит от времени года. При наличии больших массивов данных за длительные промежутки времени можно выявить циклические колебания, связанные с общей динамикой конъюнктуры рынка, а также с фазой бизнес цикла, в которой находится экономика страны. На рис. 2. представлен временной ряд, содержащий только сезонную компоненту.


Некоторые временные ряды не содержат тенденции и циклической компоненты, а каждый следующий их уровень базируется как сумма среднего уровня ряда и некоторой случайной компоненты. Пример ряда, содержащего только случайную компоненту, приведён на рис. 3.


Очевидно, что реальные данные не следуют полностью из каких-либо описанных моделей. Чаще всего они содержат все три компоненты. Каждый их уровень формируется под воздействием тенденции, сезонных колебаний и случайной компоненты.

В большинстве случаев фактический уровень временного ряда можно представить как сумму или произведение трендовой, циклической и случайной компонент. Модель, в которой временной ряд представлен как сумма перечисленных компонент, называется аддитивной моделью . Модель, в которой временной ряд представлен как произведение перечисленных компонент, называется мультипликативной моделью.

2.2. Автокорреляция уровней временного ряда.

При наличии во временном ряде тенденции и циклических колебаний значения каждого последующего уровня ряда зависят от предыдущих. Корреляционную зависимость между последовательными уровнями временного ряда называют автокорреляцией. Количественно её можно измерить с помощью линейного коэффициента корреляции между уровнями исходного временного ряда и уровнями этого ряда, сдвинутыми во времени.

Одна из рабочих формул для расчёта коэффициента корреляции имеет вид:

rxy = å ( xj - ` x ) * ( yj - ` y ) .

Öå(xj -`x)2 * å(yj -`y)2

В качестве переменной x мы рассмотрим ряд y2 , y3 , ... yt ; в качестве переменной y рассмотрим ряд y1 , y2 , ... yt -1 . Тогда данная формула примет вид:

r1 = å (y t - ` y 1 ) * (y t-1 - ` y 2 ) ; где `y1 = å y t ; `y2 = å y t-1 .

Öå(yt -`y1 )2 * å(yt-1 -`y2 )2 n - 1 n - 1

Эту величину называют коэффициентом автокорреляции уровней ряда первого порядка. Число периодов, по которым рассчитывается коэффициент автокорреляции, называют лагом . С увеличением лага число пар значений, по которым рассчитывается коэффициент автокорреляции, уменьшается.

Свойства коэффициента автокорреляции:

К-во Просмотров: 503
Бесплатно скачать Контрольная работа: Статистические расчеты содержания влаги