Контрольная работа: Статистичний метод аналізу фінансового ризику
Підставляючи вихідні дані і підраховані імовірності у формулу R = Rі· Рі , визначаємо середньозважений термін оплати рахунка. Ризикованість даної угоди визначається за допомогою стандартного відхилення, тобто можливе відхилення як у гірший, так і в кращий бік очікуваного значення показника, що розраховується, від його середнього значення. Чим більша величина стандартного відхилення, тим більший розкид можливого результату, ' тим вищий підприємницький ризик у даній угоді:
де D — дисперсія.
Потім знайдемо а — середньоквадратичне відхилення як корінь квадратний з дисперсії. Підставивши в дані формули значення змінних, обчислимо, що:
DA = 499, σА = 22,3 дня; DB = 247,7, σв = 15,7 дня.
З розрахованих значень стандартних відхилень можна зробити висновок, що укладення угод з фірмою Вменш ризиковане, оскільки й середній термін оплати, і розкид результату для цієї фірми менші.
У випадку, якщо необхідно порівняти два варіанти угоди з різними очікуваними результатами і різним ризиком, особливий інтерес становить показник, який називається коефіцієнтом варіації:
γ = σ/R ,
де = 68,4 = 68 днів;
= 52,7 = 53 днів;
γ — коефіцієнт варіації; σ — стандартне відхилення; R— очікуваний результат.
Одержаний показник дає характеристику ризику на одиницю очікуваного результату. Завдяки порівнянню коефіцієнтів варіації двох проектів, вибирається проект із найменшим коефіцієнтом.
У нашому прикладі γА = 0,326, а γв = 0,298. У даному випадку видно, що укладення угоди з фірмою В менш ризиковане. Перевага статистичного методу — простота математичних розрахунків,.а явний недолік — необхідність великої кількості вихідних даних, оскільки чим більший масив вихідних даних, тим точніший розрахунок.
За допомогою статистичного методу оцінки ризику можна оцінити не тільки ризик конкретної угоди, а й підприємства в цілому за певний проміжок часу. Доведемо це на прикладі.
Приклад. Підприємство "Отар" — невеликий виробник різних продуктів із сиру. Один із продуктів — сирна паста — поставляється в країни ближнього зарубіжжя. Генеральний директор повинен вирішити, скільки ящиків сирної пасти слід виробляти протягом місяця. Імовірності того, що попит на сирну пасту протягом місяця буде 6, 7, 8 чи 9 ящиків, рівні відповідно 0,1; 0,3; 0,5; 0,1. Витрати на виробництво одного ящика дорівнюють 45 дол. Компанія продає кожен ящик за ціною 95 дол. Якщо ящик із сирною пастою не продається протягом місяця, то вона псується і компанія не одержує доходу. Скільки ящиків треба робити протягом місяця?
Розв'язання. Користуючись вихідними даними, будуємо матрицю гри. Стратегіями гравця 1 (компанія "Смачний сир") є різні показники числа ящиків із сирною пастою, які йому, можливо, варто виробляти. Природно виступають величини попиту на аналогічне число ящиків.
Обчислимо, наприклад, показник прибутку, який одержить виробник, якщо він зробить 8 ящиків, а попит буде тільки на 7. Кожен ящик продається по 95 дол. Компанія продала 7, а виробила 8 ящиків. Отже, виторг дорівнюватиме 7 х 95, а витрати виробництва 8 ящиків дорівнюватимуть 8 х 45. Разом прибуток від зазначеного поєднання попиту та пропозиції дорівнюватиме: (7х95)-(8х45)=305 дол. Аналогічно проводяться розрахунки при інших поєднаннях попиту та пропозиції.
У підсумку одержимо таку платіжну матрицю в грі з природою. Як бачимо, найбільший середній очікуваний прибуток дорівнює 352,5 дол. Він відповідає виробництву 8 ящиків.
На практиці найчастіше в подібних випадках рішення приймаються, виходячи з критерію максимізації середнього очікуваного прибутку чи мінімізації очікуваних витрат. Дотримуючись такого підходу, можна зупинитися на рекомендації виробляти 8 ящиків, і для більшості ОПР рекомендація була б обґрунтованою.
Однак, залучаючи додаткову інформацію у формі розрахунку середньоквадратичного відхилення як індексу ризику, ми можемо уточнити прийняте на основі максимуму прибутку чи мінімуму витрат рішення.
Згадаємо необхідні для наших досліджень формули теорії ймовірностей:
дисперсія випадкової величини:
середньоквадратичне відхилення:
де D і - відповідно символи дисперсії математичного очікування.
Проводячи відповідні обчислення для випадків виробництва 6, 7, 8 і 9 ящиків, одержуємо:
6 ящиків