Контрольная работа: Статистичний метод аналізу фінансового ризику

σ = 0;

γ = σ/R = 0.

7 ящиків

D(x)= 0,1х(255 - 340,5)2 + (0,3 + 0,5 + 0,1) х (350 - 340,5)2 = = 812,5;

σ == 28,5;

у = σ / R = 28,5/340,5 = 0,08.

8 ящиків

D(x)=0,1 х (210 - 352,5)2 + 0,3 х (305 - 352,5)2 + (0,1 + 0,5) х (305- 352,5)2 = 4061,25;

σ = = 63,73;

у = σ / R = 63,73/352,5 = 0,18.

9 ящиків

D(x)= 0,1 х (165 - 317)2 + 0,3 х (360 - 317)2 + 0,5 х (355 - 317)2 + 0,1 х (450 - 317)2 = 5776;

σ = = 76;

у = σ / R = 76/317=0,24.

З представлених результатів розрахунків з урахуванням отриманих показників ризиків — середньоквадратичних відхилень — очевидно, що виробляти 9 ящиків за будь-яких обставинах недоцільно, тому що середній очікуваний прибуток дорівнює 317 — менше, ніж для 8 ящиків (352,5), а середньоквадратичне відхилення (76) для 9 ящиків більше аналогічного показника для 8 ящиків (63,73).

А от чи доцільне виробництво 8 ящиків порівняно з 7 і 6 — не очевидно, тому що ризик при виробництві 8 ящиків (σ = 63,73) більший, ніж при виробництві 7 ящиків (σ = 28,5) і тим більше 6 ящиків, де σ = 0. Вся інформація з урахуванням очікуваних прибутків і ризиків у наявності. Рішення повинен приймати генеральний директор компанії з урахуванням свого досвіду, схильності до ризику і ступеня вірогідності показників ймовірностей попиту: 0,1; 0,3; 0,5; 0,1. Автори, з огляду на всі приведені числові характеристики випадкової величини — прибутку, схиляються до рекомендації виробляти 7 ящиків (не 8, що випливає з максимізації прибутку без урахування ризику!). Пропонується зробити свій вибір.

Найбільше поширена точка зору, згідно з якою мірою ризику певного комерційного (фінансового) рішення чи операції слід вважати середньоквадратичне відхилення (позитивний квадратний корінь з дисперсії) значення показника ефективності цього рішення чи операції.

Дійсно, оскільки ризик обумовлений недетермінованістю результату рішення (операції), то чим менший розкид (дисперсія) результату рішення, тим більше він передбачуваний, тобто менший ризик. Якщо варіація (дисперсія) результату дорівнює нулю, то ризик повністю відсутній.

Наприклад, в умовах стабільної економіки операції з державними цінними паперами вважаються безризиковими. Найчастіше показником ефективності фінансового рішення (операції) є прибуток.

Розглянемо як ілюстрацію вибір певною особою одного з двох варіантів інвестицій в умовах ризику. Припустимо, є два проекти А і В, у які зазначена особа може вкласти кошти. Проект А у визначений момент у майбутньому забезпечує випадкову величину прибутку. Припустимо, що її середнєочікуване значення (математичне очікування), дорівнює з дисперсією . Для проекту В ці числові характеристики прибутку як випадкової величини передбачаються рівними відповідно з дисперсією. Середньоквадратичні відхилення дорівнюють відповідно і . Можливі такі випадки:

а)=, < , слід обрати проект А;

b) >, <, слід обрати проект А;

с) >,= , слід обрати проект А;

d) >, >, слід обрати проект A;

е) <, <, слід обрати проект А.

В останніх двох випадках рішення про вибір проекту А чи В залежить від ставлення до ризику особи, що приймає рішення (ОПР). Зокрема, у випадку d проект А забезпечує вищий середній прибуток, однак він і більш ризикований. Вибір при цьому визначається тим, якою додатковою величиною середнього прибутку компенсується для ОПР задане збільшення ризику. У випадку для проекту А ризик менший, але й очікуваний прибуток менший.

Приклад. Розглянемо два варіанти виробництва нових товарів. З огляду на невизначеність ситуації з реалізацією товарів, керівництво проаналізувало можливі доходи від реалізації проектів у різних ситуаціях (песимістична, найбільш імовірна, оптимістична), а також імовірність настання зазначених ситуацій.

Результати аналізу, що є вихідними даними для розв'язання задачі, подані в табл. 3.

Таблиця 3. Вихідні дані

К-во Просмотров: 311
Бесплатно скачать Контрольная работа: Статистичний метод аналізу фінансового ризику