Контрольная работа: Статистика на предприятии

Коэффициент вариации меньше 33%, следовательно, совокупность является однородной, а средняя - типичной и устойчивой.

Задача 5

На основании аналитической группировки задачи 1 вычислить общую, межгрупповую и среднюю из внутригрупповых дисперсий. Определите корреляционное отношение по выработке одного рабочего. Сделайте выводы.

РЕШЕНИЕ:

Общая дисперсия измеряет вариацию признака во всей совокупности под влиянием всех факторов, обусловливающих эту вариацию и рассчитывается по формуле:

где - общая средняя по всей совокупности.

Межгрупповая дисперсия характеризует систематическую вариацию, т.е. различия в величине изучаемого признака, возникающие под влиянием признака-фактора, положенного в основание группировки. Она рассчитывается по формуле:

Где - средние по отдельным группам;

nj -численности по отдельным группам.

Внутригрупповая дисперсия отражает случайную вариацию, т.е. часть вариации, происходящую под влиянием неучтенных факторов и не зависящую от признака-фактора, положенного в основание группировки. Она исчисляется следующим образом:

Средняя из внутригрупповых дисперсий:

Закон, связывающий три вида дисперсий: общая дисперсия равна сумме средней из внутригрупповых и межгрупповых дисперсий:

σ2 общ = δ2 + σ2

Данное соотношение называют правилом сложения дисперсий.

Для решения задачи сначала определим средние по каждой группе. Расчет средних выполнен в табл.5.

Средняя выработка в первой группе (до 3 лет) равна

х1 = 134,2 шт. (971: 5), во второй (от 3 до 10 лет) х2 = 127,0625 шт. (2033: 16), в третьей (свыше 10 лет) х3 = 142,667 шт. (1284: 9)

Промежуточные расчеты дисперсий по группам представлены в табл.5.

Таблица 5. - Расчет данных для определения внутригрупповых дисперсий.

№ рабочего

Выработка (х)



1

2

3

4

До 3 лет

К-во Просмотров: 701
Бесплатно скачать Контрольная работа: Статистика на предприятии