Контрольная работа: Теория информации. Статистический подход
МОСКОВСКИЙ ГУМАНИТАРНО-ЭКОНОМИЧЕСКИЙ ИНСТИТУТ
Калужский филиал
Юридический факультет
Кафедра гражданско-правовых дисциплин
Контрольная работа
по учебному курсу
"Математические методы анализа и принятия решений"
Выполнил: Титов Е.А.
студент 4-го курса
группа ЮЗВС-08
Руководитель:
Махмудов Н.Р.
Калуга - 2010 г.
План
Статистический подход к измерению правовой информации
Графический метод решения задач линейного программирования
Методика решения задач ЛП графическим методом
Список используемой литературы
Статистический подход к измерению правовой информации
Статистический подход изучается в разделе кибернетики, называемом теорией информации. Его основоположником считается К. Шеннон, опубликовавший в 1948 году свою математическую теорию связи. Большой вклад в теорию информации до него внесли ученые Найквист и Хартли.
В 1924 и 1928 гг. они опубликовали работы по теории телеграфии и передаче информации. Признаны во всем мире исследования по теории информации российских ученых А.Н. Колмогорова, А.Я. Хинчина, В.А. Котельникова, А.А. Харкевича и др.
К. Шенноном было введено понятие количество информации как меры неопределенности состояния системы, снимаемой при получении информации.
Количественно выраженная неопределенность состояния получила название энтропии по аналогии с подобным понятием в статистической механике.
При получении информации уменьшается неопределенность, т.е. энтропия, системы. Очевидно, что чем больше информации получает наблюдатель, тем больше снимается неопределенность, и энтропия системы уменьшается.
При энтропии, равной нулю, о системе имеется полной информация, и наблюдателю она представляется целиком упорядоченной. Таким образом, получение информации связано с изменением степени неосведомленности получателя о состоянии этой системы.
До получения информации ее получатель мог иметь некоторые предварительные (априорные) сведения о системе Х.
Оставшаяся неосведомленность и является для него мерой неопределенности состояния (энтропией) системы. Обозначим априорную энтропию системы Х.
После получения некоторого сообщения наблюдатель приобрел дополнительную информацию уменьшившую его начальную неосведомленность.
Другими словами, количество информации измеряется уменьшением (изменением) неопределенности состояния системы.
Вероятность p - количественная априорная (т.е. известная до проведения опыта) характеристика одного из исходов (событий) некоторого опыта. Измеряется в пределах от 0 до 1.
Если заранее известны все исходы опыта, сумма их вероятностей равна 1, а сами исходы составляют полную группу событий.
Если все исходы могут свершиться с одинаковой долей вероятности, они называются равновероятными.
Например, пусть опыт состоит в сдаче студентом экзамена по информатике.
Очевидно, у этого опыта всего 4 исхода (по количеству возможных оценок, которые студент может получить на экзамене).
Тогда эти исходы составляют полную группу событий, т.е. сумма их вероятностей равна 1. Если студент учился хорошо в течение семестра, значения вероятностей всех исходов могут быть такими:
--> ЧИТАТЬ ПОЛНОСТЬЮ <--