Контрольная работа: Теория информации. Статистический подход
Единица измерения информации при статистическом подходе - бит.
На практике часто вместо вероятностей используются частоты исходов. Это возможно, если опыты проводились ранее и существует определенная статистика их исходов. Так, строго говоря, в построении эффективных кодов участвуют не частоты символов, а их вероятности
Введенная количественная статистическая мера информации широко используется в теории информации для оценки собственной, взаимной, условной и других видов информации.
Графический метод решения задач линейного программирования
Теоретическое введение.
Графический метод довольно прост и нагляден для решения задач линейного программирования с двумя переменными. Он основан на геометрическом представлении допустимых решений и ЦФ задачи.
Каждое из неравенств задачи линейного программирования определяет на координатной плоскости некоторую полуплоскость (рис.1), а система неравенств в целом - пересечение соответствующих плоскостей. Множество точек пересечения данных полуплоскостей называется областью допустимых решений (ОДР.). ОДР всегда представляет собой выпуклую фигуру, т.е. обладающую следующим свойством: если две точки А и В принадлежат этой фигуре, то и весь отрезок АВ принадлежит ей. ОДР графически может быть представлена выпуклым многоугольником, неограниченной выпуклой многоугольной областью, отрезком, лучом, одной точкой. В случае несовместности системы ограничений задачи (1) ОДР является пустым множеством.
Все вышесказанное относится и к случаю, когда система ограничений (1) включает равенства, поскольку любое равенство
можно представить в виде системы двух неравенств (см. рис.1)
ЦФ при фиксированном значении определяет на плоскости прямую линию . Изменяя значения L, мы получим семейство параллельных прямых, называемых линиями уровня .
Это связано с тем, что изменение значения L повлечет изменение лишь длины отрезка, отсекаемого линией уровня на оси (начальная ордината), а угловой коэффициент прямой останется постоянным (см. рис.1). Поэтому для решения будет достаточно построить одну из линий уровня, произвольно выбрав значение L.
Вектор с координатами из коэффициентов ЦФ при и перпендикулярен к каждой из линий уровня (см. рис.1). Направление вектора совпадает с направлением возрастания ЦФ, что является важным моментом для решения задач. Направление убывания ЦФ противоположно направлению вектора.
Суть графического метода заключается в следующем. По направлению (против направления) вектора в ОДР производится поиск оптимальной точки . Оптимальной считается точка, через которую проходит линия уровня , соответствующая наибольшему (наименьшему) значению функции . Оптимальное решение всегда находится на границе ОДР, например, в последней вершине многоугольника ОДР, через которую пройдет целевая прямая, или на всей его стороне.
При поиске оптимального решения задач линейного программирования возможны следующие ситуации: существует единственное решение задачи; существует бесконечное множество решений (альтернативный оптиум); ЦФ не ограничена; область допустимых решений - единственная точка; задача не имеет решений.
Рисунок 1. Геометрическая интерпретация ограничений и ЦФ задачи.
Методика решения задач ЛП графическим методом
В ограничениях задачи заменить знаки неравенств знаками точных равенств и построить соответствующие прямые.
Найти и заштриховать полуплоскости, разрешенные каждым из ограничений-неравенств задачи. Для этого нужно подставить в конкретное неравенство координаты какой-либо точки [например, (0; 0)], и проверить истинность полученного неравенства.
Если неравенство истинное,
то надо заштриховать полуплоскость, содержащую данную точку;
иначе (неравенство ложное) надо заштриховать полуплоскость, не содержащую данную точку.
Поскольку и должны быть неотрицательными, то их допустимые значения всегда будут находиться выше оси и правее оси , т.е. в I-м квадранте.
Ограничения-равенства разрешают только те точки, которые лежат на соответствующей прямой. Поэтому необходимо выделить на графике такие прямые.
Определить ОДР как часть плоскости, принадлежащую одновременно всем разрешенным областям, и выделить ее. При отсутствии ОДР задача не имеет решений.
Если ОДР - не пустое множество, то нужно построить целевую прямую, т.е. любую из линий уровня (где L - произвольное число, например, кратное и , т.е. удобное для проведения расчетов). Способ построения аналогичен построению прямых ограничений.
Построить вектор , который начинается в точке (0; 0) и заканчивается в точке . Если целевая прямая и вектор построены верно, то они будут перпендикулярны .
При поиске максимума ЦФ необходимо передвигать целевую прямую в направлении вектора , при поиске минимума ЦФ - против направления вектора . Последняя по ходу движения вершина ОДР будет точкой максимума или минимума ЦФ. Если такой точки (точек) не существует, то можно сделать вывод о неограниченности ЦФ на множестве планов сверху (при поиске максимума) или снизу (при поиске минимум).
Определить координаты точки max (min) ЦФ и вычислить значение ЦФ . Для вычисления координат оптимальной точки необходимо решить систему уравнений прямых, на пересечении которых находится .