Контрольная работа: Теорія вірогідності
n=1; p=0,2
Розв’язок:
q=1-p=1-0,2=0,8
М (Х) =np=1*0.2=0.2 - математичне сподівання
D (X) =npq=4*0.2*0.8=0.64- дисперсія
σХ = - середнє квадратичне відхилення
Завдання 5
Побудувати графік щільності розподілу неперервної випадкової величини Х, яка має нормальний закон розподілу з математичним сподіванням М (Х) =а і проходить через задані точки
a)
а=3.
x | 1 | 2 | 4 | 5 |
f (x) | 0.05 | 0.24 | 0.24 | 0.05 |
г)
а=1.
X | -2 | -1 | 3 | 4 |
f (x) | 0.075 | 0.088 | 0.088 | 0.075 |
Завдання 6
Задано вибірку, яка характеризує місячний прибуток підприємців (у тис грн.):
*Скласти варіаційний ряд вибірки.
*Побудувати гістограму та полігон частот, розбивши інтервал на чотири-шість рівних підінтервалів.
*Обчислити моду, медіану, середнє арифметичне, дисперсію варіаційного ряду:
6, 10, 12, 11, 11, 14, 6, 8, 12, 10, 14, 8, 9, 11, 7, 7, 12, 10, 13,6.
Розв’язання:
Скласти варіаційний ряд вибірки.
Оскільки вибірка складається з 20 значень, то обсяг вибірки n=20.
Побудуємо варіаційний ряд вибірки:
6, 6, 6, 7, 7, 8, 8, 9,10, 10, 10, 11, 11, 11, 12, 12, 12, 13, 14, 14.
2. Побудувати гістограму та полігон частот, розбивши інтервал на чотири-шість рівних підінтервалів.
У даній вибірці 9 різних варіант, запишемо їх частоти у вигляді статистичного розподілу:
Таблиця 1
хі 6 7 8 9 10 11 12 13 14
n? 3 2 2 1 3 3 3 1 2
Рис.1. Полігон розподілу частот.
Для побудови гістограми та полігону побудуємо інтервальний статистичний розподіл.
Виберемо S= 5 інтервалів, а довжину інтервалу обчислимо за формулою.
Тобто: