Контрольная работа: Теплофизический расчет шара

Рис. 6.2 . Распределение температуры по толщине шара (резина).


Использование формулы (3) дает большую точность решения, но в узко ограниченной области толщины шара(r=0.485-0.5м), на остальном промежутке значений радиуса шара погрешность формулы (3) гораздо больше формулы (4).

Проверим точность этих формул, задав точку радиуса шара вблизи поверхности (r=0.495м), варьируя значении параметра Фурье от 0 до 1.

По результатам расчетов построен график зависимости избыточной температуры от параметра Фурье (Рис. 6.3).Также построен еще один график зависимости избыточной температуры от параметра Фурье, но в более ограниченной области (Рис. 6.4).

Рис. 6.2 . Зависимости Θ от Fo (резина).


Рис. 6. 3 . Зависимости Θ от Fo (резина).

Распределение температуры по толщине шара из стали (табл. 4) и резины (табл.5), в различные моменты времени, сведены в таблицы.

Таблица 5 . Распределение температуры для шара из стали

r 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
T(r,6000) 460.30 495.29 597.74 760.37 971.55 1216.1 1476.5 1733.3 1968.7 2163.5 2302.2
T(r,6500) 899.89 931.29 1023.2 1168.9 1358.0 1576.6 1808.6 2036.8 2243.6 2412.5 2528.8
T(r,7000) 1350.5 1378.4 1459.8 1588.9 1755.9 1948.6 2152.3 2351.3 2529.6 2672.0 2765.2
T(r,7500) 1806.5 1830.9 1902.2 2015.1 2160.8 2328.3 2504.3 2674.5 2824.6 2940.6 3010.1

Таблица 6 . Распределение температуры для шара из резины

r 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
T(r,300) 273.00 273.00 273.00 273.00 273.00 273.00 273.00 273.00 273.00 273.00 361.31
T(r,600) 273.00 273.00 273.00 273.00 273.00 273.00 273.00 273.00 273.00 272.97 450.62
T(r,1000) 273.00 273.00 273.00 273.00 273.00 273.00 273.00 273.00 273.00 270.29 569.94
T(r,2000) 273.00 273.00 273.00 273.00 273.00 273.00 273.00 273.00 272.98 180.45 868.71

4. Анализ решения

Из уравнения:

видно, что относительная избыточная температура прямо пропорциональна критерию Pd, т. е. скорость нагревания окружающей среды непосредственно влияет на повышение температуры тела в любой его точке.

Ряд в решении быстро сходится, и поэтому для квазистационарного режима, определяемого условием Fo>Fo1, им можно пренебречь.

При Bi →∞ температура поверхности шара будет линейной функцией времени. решение для безразмерной температуры можно записать в виде:

С

делав оценку ряда для центра шара (r=0), решение можно записать как:

где


Используя эти уравнения можно найти количество членов ряда, необходимое для получения точного решения:

,

где К - количество членов ряда


Рис. 7 .Зависимость суммы ряда от количества членов ряда

Таблица 7 .

φ(0.01,K) 1.1016 0.8968 0.9523 0.9367 0.9408 0.9398 0.9400 0.9399 0.9400 0.94
φ(0.05,K) 0.7422 0.7000 0.7015 0.7016 0.7016 0.7016 0.7016 0.7016 0.7016 0.7016
φ(0.1,K) 0.4532 0.4473 0.4473 0.4473 0.4473 0.4473 0.4473 0.4473 0.4473 0.4473
φ(0.5,K) 0.0087 0.0087 0.0087 0.0087 0.0087 0.0087 0.0087 0.0087 0.0087 0.0087

Можно получить график зависимости величины суммы ряда для различных значений числа Фурье от количества членов ряда(Рис. 7). А также составить таблицу значений величины суммы ряда (табл. 7).

К-во Просмотров: 319
Бесплатно скачать Контрольная работа: Теплофизический расчет шара