Контрольная работа: Ценообразование на рынке транспортных услуг

11

-12,05

12

14,58

13

-17,12

14

-19,64

15

-22,17

Рисунок 3 – Линия нулевого потребительского излишка АС


Задание 3 Кривая безразличия и ее анализ

Потребитель располагает ограниченным денежным доходом (Д), который он расходует на приобретение двух товаров А и В по ценам Ра и Рб соответственно. Определить оптимальную комбинацию покупки товаров А и В, при условии, что потребитель расходует весь доход только на покупку данных товаров. Общая полезность зависит от комбинации данных товаров, количественное значение которой определяется по формуле:

TU = aX + bY - cX2 - dY2 ,

где a, b, c, d – параметры функции полезности;

X – количество купленного товара А;

Y – количество купленного товара В.

Решение

С учетом наличной суммы денежных средств, потребитель будет стремиться приобрести такую комбинацию товаров и услуг, которая максимизирует совокупную полезность. Потребитель использует так называемый «порядковый подход». Сначала он покупает благо, которое на один рубль его цены приносит наибольшую предельную полезность. По мере увеличения количества потребления первого блага, его предельная полезность уменьшается и может стать ниже предельной полезности второго блага. Потребитель, если у него еще есть денежные средства, будет приобретать второе благо, у которого так же будет уменьшаться предельная полезность – потребитель перейдет к покупке следующего по порядку блага, и так до тех пор, пока не будут израсходованы все денежные средства. Порядок или очередность приобретения благ выстраивается по величине убывания их предельной полезности l.

Определим максимизирующую комбинацию благ методом множителей Лагранжа. Пусть Ра, и Рб – цены на товары соответственно А и В. D – денежный доход потребителя, а TU = f(X,Y) – функция потребительской полезности от потребления товара А в количестве Х и товара В в количестве Y. Кривая безразличия определяется путем

TU = f(X,Y) = C,

де С – постоянная величина. Найдем полный дифференциал функции полезности

= 0,

поскольку TU = C. Решая полный дифференциал относительно

получим следующее

или

Отсюда

К-во Просмотров: 395
Бесплатно скачать Контрольная работа: Ценообразование на рынке транспортных услуг