Контрольная работа: Универсальная тригонометрическая подстановка
Данная замена позволяет в два раза понизить степень тригонометрических функций. Раскрывая скобки в интеграле , получаем снова случаи 5 или 6.
7. Пусть дан , где и – четные и хотя бы одно из этих чисел отрицательно. Тогда удобна та же замена, что и в случае 4.
8. В случае используется тригонометрическая формула
и интеграл превращается в два табличных интеграла.
9. В случае используется тригонометрическая формула
.
10. В случае используется тригонометрическая формула
.
3. Тригонометрические подстановки для интегралов вида
Рассмотрим тригонометрические подстановки для вычисления таких интегралов, которые сводят подынтегральную функцию к функции, рационально зависящей от и . Вначале выполняется выделение полного квадрата в трёхчлене (и соответствующей линейной замены переменной), в результате этого интеграл сводится, в зависимости от знаков и дискриминанта трёхчлена, к интегралу одного из следующих трёх видов:
, , .
Следующий шаг:
1) рационализируется подстановкой x = a sin t (или x = a cos t ). Замена переменной в неопределённом интеграле.
2) рационализируется подстановкой (или , или ).
3) рационализируется подстановкой x = a tg t (или x = a ctg t , или x = a sh t ).
Пример 1. . Интеграл вида , из возможных подстановок наиболее удобной оказывается x = ctg t .
,
поэтому
или
.
Пример 2.
3. Интегрирование некоторых алгебраических иррациональностей
Рассмотрим теперь интегрирование функций, содержащих радикалы. Не от всякой иррациональной функции интеграл выражается через элементарные функции. Однако в наиболее простых случаях, когда над радикалами выполняются рациональные действия, это удается сделать. Необходимо отметить, что все такие иррациональные функции интегрируются посредством их рационализации, то есть избавления от корней.