Контрольная работа: Виробництво азотної кислоти

де 1,27 - кількість води у хвостових газах на виході з колони, кмоль;

26,56 - кількість водяної пари у газі на виході з контактного апарата, кмоль.

У перерахуванні на годинну продуктивність це складе:

21,27 *14,5 = 308,42 кмоль/год або 308,42*18 = 5551 кг/год.

або 5551*22,4/18 = 69-8,61 м3 /год

Склад хвостових газів на виході з колони представлений у таблиці.

Склад хвостових газів на виході з колони

Компоненти

кмоль

м3

% про.

кг

NO

0,06

1,43

0,04

1,92

O2

3,68

82,52

2,6

117,89

N2

136,66

3061,19

96,46

3826,49

H2 O

1,27

28,40

0,90

22,82

Разом

141,67

3173,54

100

3969,12


4. Очищення викидних газів

Особливу увагу в існуючих і виробництвах, що проектуються, необхідно приділяти очищенню газів від оксидів азоту. В усьому світі витрати на ці мети неухильно зростають. Однак необхідно проводити подальшу роботу зі скорочення кількості газових викидів і по впровадженню безвідхідних технологічних процесів, а також розробляти більше ефективні методи знешкодження газоподібних викидів.

Для систематизації методів санітарного очищення газів і для більше цілеспрямованого проведення досліджень здійснена класифікація методів очищення газів від оксидів азоту. В основу її покладена здатність оксидів азоту окислятися під дією рідких, твердих і газоподібних окислювачів, відновлюватися до елементарного азоту під дією високих температур, вступати в хімічні реакції з різними групами сполук, що піддаються регенерації. Відповідно до запропонованої класифікації розроблені методи очищення газів від оксидів азоту підрозділені на чотири класи: окисні, відновлювальні, сорбційні та інші методи.

Найбільш ефективним способом знешкодження нітрозних газів є каталітичне відновлення оксидів азоту до елементарного азоту. Процес відновлення протікає на поверхні каталізатора в присутності газу відновлювача. Каталізаторами служать сплави металів платинової групи. Найбільш високу каталітичну активність мають каталізатори на основі палладія, платини й родію, зміст яких у каталізаторі коливається в межах 0,1-2,0%, нанесених на оксиди алюмінію, цинку, силікагелю, кераміку й природні матеріали.

Умовно по температурах відновлення процеси ділять на високотемпературні (більше 5000 С) і низькотемпературні (менш 5000 С).

У якості відновлюючого агенту при високотемпературному очищенні запропоновані: водень, азотно-воднева суміш, оксид вуглецю (II), природні, нафтові, коксовий гази, пари гасу, мазуту й ін. Практичне застосування в промисловості знайшов природний газ, вміст сірки в якому не повинне перевищувати 20 мг/м3 .

Як каталізатори застосовують метали Рt, Рd, Rh, Ru, Ni, Сu, Сг, Fе й сплави Ni-Сг, Сu-Сг, Zn-Сг і ін., нанесені на оксиди алюмінію, цинку, силікагель, кераміку й природні матеріали. В агрегатах УКЛ-7,3 і АК-72 застосовують паладієвий каталізатор АПК-2 (Аl2 О3 із 2% Рd). Процес відновлення NOx протікає при 720-770 0 С, об'ємній і лінійній швидкостях газу відповідно 15000-25000 год-1 і 1,0-1,5 м/с. Для досягнення залишкової концентрації оксидів азоту в межах 0,002- 0,008% (про.) підтримують 10%-ний надлишок природного газу від стехіометричного.

Першою стадією процесу є горіння й конверсія метану киснем

СН4 + 2О2 ↔ СО2 +2Н2 0 + 804,58 кДж. (45)

При неповному згорянні метану утворяться водень і моноксид вуглецю:

СН4 + 0,502 = СО + 2Н2 + 35,13 кДж. (46)

Диоксид азоту відновлюється до оксиду азоту NО, а потім останній до N2

Н2 + NО2 = Н2 О+NО+ 184,9 кДж, (47)

Н2 + NО = Н2 О + 0,5 N2 + 332,45 кДж. (48)

Аналогічно взаємодіє N0х з монооксидом вуглецю. Сумарні реакції взаємодії природного газу з оксидами азоту можна представити у вигляді:

СН4 + 4NО2 =СО + 4NО + 2Н2 0 + 574,4 кДж, (49)

СН4 + 4NО = СО2 + 2N2 + 2Н2 0 + 11 646 кДж. (50)


Основним недоліком такого методу є поява в газових викидах оксиду вуглецю (II), не менш шкідливого, чим оксиди азоту.

З метою зменшення витра

К-во Просмотров: 515
Бесплатно скачать Контрольная работа: Виробництво азотної кислоти