Контрольная работа: Выборочная ковариация
(w-w)
_ _
(x-x)(w-w)
Демонстрация правила 2
В таблице 1.3 последняя колонка (z) дает расходы на питание и одежду для второго множества из 6 семей. Каждое наблюдение z фактически представляет собой удвоенное значение y. Предполагается, что значения величины x для второго набора семей являются такими же, как и ранее. Для вычисления Cov(x,z) необходимы значения (x-xсредн. ), а также (z-zсредн. )
Таблица 1.5
Семья | (x-x) | (z-z) | (x-x)(z-z) |
1 | -883 | -150 | 132500 |
2 | -1383 | -650 | 899167 |
3 | 117 | 50 | 5833 |
4 | 2117 | 850 | 1700167 |
5 | -583 | -350 | 204167 |
6 | 617 | 250 | 154167 |
Сумма: | 3195000 | ||
Среднее: | 532500 |
Из таблицы 1.5 можно видеть, что Cov(x,z) равна 532500, что в точности равно удвоенной Cov(x,y).
Демонстрация правила 3
Допустим, что каждая семья в выборке имеет по два взрослых человека, и предположим, что по недоразумению мы решили вычислить ковариацию между общим доходом (x) и числом взрослых в семье (a). Естественно, что a1 =a2 =…=a6 =2. Таким образом, aсредн . = 2. Отсюда для каждой семьи (a-aсредн. ) = 0 и, следовательно, (x-xсредн. )(a-aсредн. ) = 0. Поэтому Cov(x,a) = 0.
Теоретическая ковариация
Если x и y – случайные величины, теоретическая ковариация sxy определяется как математическое ожидание произведения отклонений величин от их средних значений:
pop.cov(x,y) =xy = E{(x)(y-y )}
Если теоретическая ковариация неизвестна, то для ее оценки может использована выборочная ковариация, вычисленная по ряду наблюдений. К сожалению такая оценка ,будет иметь отрицательное смещение.
Если x и y независимы, то их теоретическая ковариация равна нулю, поскольку:
E{(xx )(yy )} = E(xx )(yy ) = 0*0
Выборочная дисперсия.
Для выборки из n наблюдений x1 ,…,xn выборочная дисперсия определяется как среднеквадратичное отклонение в выбоке:
Var(x) = 1/nS(x-x)2
Замечание. Определеннаятаким образом выборочная дисперсия представляет собой смещенную оценку теоретической дисперсии s2 , которая определяется как:
1/(n-1)S(x-x)2 , является несмещенной оценкой s2 . Отсюда следует, что ожидаемое значение величины Var(x) равно [(n-1)/n]s2 и, следовательно, она имеет отрицательное смещение. Отметим, что если размер выборки n становится большим, то (n-1)/n стремится к единице и, таким образом, математическое ожидание величины Var(x) стремится к s2 .
Правила расчета дисперсии.
· Правило 1
Если y = v+w, то Var(y) = Var(v)+Var(w)+2Cov(v,w)
· Правило 2
Если y = az, где a является постоянной, то Var(y) = a2 Var(z)
· Правило 3
Если y = a, где a является постоянной, то Var(y) = 0
· Правило 4
Если y = v+a, где a является постоянной, то Var(y) = Var(v)
Следует заметить, что дисперсия переменной x может рассматриваться как ковариация между двумя величинами x: