Курсовая работа: Аберрации оптических систем

Последние соотношения являются точными, но стоящая справа величина

сама зависит от координат точки , т. е. от лучевых аберраций. Тем не менее для большинства практических целей можно заменять на радиус опорной сферы R или на другое приближенное выражение (см. ниже, уравнение (15)). Легко показать, что в силу симметрии задачи величина Ф зависит от четырех переменных, входящих только в трех комбинациях, а именно: , и . В самом деле, если ввести в плоскостях XY полярные координаты, т. е. положить

(11)

то окажется, что Ф зависит только от , , и , или, что то же самое, Ф зависит от , , и 0. Предположим теперь, что оси X и Y систем с началами в и поворачивается на один и тот же угол и в одном и том же направлении относительно оси системы.

При этом , , не изменяются, а угол 0 увеличивается на угол поворота. Поскольку функции Ф инвариантна относительно таких поворотов, она не должна зависеть от последней переменной, т. е. зависит только от , , и . Следовательно, функции аберраций Ф является функцией трех скалярных произведений

(12)

двух векторов и .

Отсюда вытекает, что при разложении Ф в ряд по степеням четырех координат нечетные степени будут отсутствовать. Поскольку Ф (0, 0; 0, 0) = 0, то членов нулевой степени тоже не будет. Более того, не будет и членов второй степени, так как, согласно (10), они соответствуют лучевым аберрациям, линейно зависящим от координат, а это противоречит тому, что , является параксиальным изображением точки . Таким образом, наше разложение имеет вид

(13)

где с - константа, а — полином степени 2k по координатам и содержит их только в виде трех скалярных инвариантов (12). Говорят, что член степени 2k описывает волновую аберрацию порядка 2k. Аберрации наинизшего порядка (2k = - 4) обычно называются первичными аберрациями или аберрациями Зайделя.

Для оценки порядка величин некоторых выражений и точности наших вычислений удобно ввести параметр . Этим параметром может служить любая величина первого порядка, скажем, угловая апертура системы. Тогда можно допустить, что все лучи, проходящие через систему, составляют с оптической осью углы О(), где символ О() означает, что величина угла порядка .

Оценим погрешность, возникающую при замене в основном уравнении (10) на величины, не зависящие от и . Из (3) и (5) имеем

(14)

тогда вместо (8) можем написать


(15)

Соотношения (10) для компонент лучевой аберрации принимают вид

(16)

(17)

3. Первичные аберрации (аберрации Зайделя)

Используя рассуждения, совершенно аналогичные тем, которые относились к функции аберраций, можно показать, что разложение в степенной ряд возмущенного эйконала Шварцшильда имеет в силу симметрии задачи следующий вид:

(1)

Где — полином степени 2 k по четырем переменным; более того, эти переменные входят только в трех комбинациях:

(2)

В соотношении (1) отсутствует член второй степени, так как в противном случае это противоречило бы тому, что, , , и в приближении параксиальной оптики.

Поскольку переменные входят только в комбинациях (2), член должен иметь вид

, (3)

где А, В,... — постоянные. Знаки и числовые множители в (3) общепринятые; выражения для лучевых аберраций в этом случае принимают простой вид.

Конечно, разложение в степенной ряд функции имеет такой же вид, как и (1), но оно не содержит члена нулевого порядка (), и главный член отличается от тем, что в нем отсутствует слагаемое . Таким образом, общее выражение для волновой аберрации наинизшего (четвертого) порядка записывается следующим образом:

. (4)

К-во Просмотров: 401
Бесплатно скачать Курсовая работа: Аберрации оптических систем