Курсовая работа: Аберрации оптических систем
Общее выражение для компонент лучевой аберрации наинизшего (третьего) порядка в виде
(5)
Коэффициент А не входит в выражения (4) и (5), т. е. существуют только пять типов аберрации наинизшего порядка, характеризуемых пятью коэффициентами В, С, D, E и F. Как указывалось выше, эти аберрации называются первичными аберрациями или аберрациями Зайделя.
При исследовании аберраций Зайделя удобно выбрать оси таким образом, чтобы плоскость yz проходила через точку предмета; тогда . Если затем ввести полярные координаты
, (6)
то (4) примет вид
, (7)
а (5) — вид
(8)
В частном случае равенства нулю всех коэффициентов в (7) волновой фронт, проходящий через выходной зрачок совпадает (в рассматриваемом приближении) с опорной сферой Гаусса (см. рис. 2.2). В общем случае эти коэффициенты отличны от нуля. Тогда каждый член в (7) описывает определенный тип отклонения мы нового фронта от правильной сферической формы; на рис. 3.1 показаны пять различных типов аберраций.
Важность лучевых аберраций, связанных с определенной точкой предмета, можно проиллюстрировать графически с помощью так называемых аберрационных (или характеристических) кривых. Эти кривые являются геометрическим местом точек пересечения лучей, выходящих из фиксированной зоны =const выходного зрачка, с плоскостью изображения. Тогда поверхность, образованная аберрационными кривыми. соответствующими всем возможным значениям , представляет собой неидеальное изображение.
Рис.3.1 Первичные волновые аберрации.
А) сферическая. Б) кома. В) астигматизм. Г) кривизна поля. Д) дисторсия
Рассмотрим отдельно каждую из аберраций Зайделя
3.1 Сферическая аберрация ( )
Если все коэффициенты, за исключением В, равны нулю, то (8) принимает вид
. (9)
Аберрационные кривые в этом случае имеют форму концентрических окружностей, центры которых расположены в точке параксиального изображения, а радиусы пропорциональны третьей степени радиуса зоны , но не зависят от положения () предмета в зоне зрения. Такой дефект изображения называется сферической аберрацией.
|
Сферическая аберрация, будучи независимой от искажает как осевые, так и внеосевые точки изображения. Лучи, выходящие из осевой точки предмета и составляющие существенные углы с осью, пересекут её в точках, лежащих перед параксиальным фокусом или за ним (рис. 5.4). Точка, в которой пересекаются с осью лучи от края диафрагмы, назывался краевым фокусом. Если экран в области изображения помещен под прямым углом к оси, то существует такое положение экрана, при котором круглое пятно изображения на нем минимально; это минимальное «изображение» называется наименьшим кружком рассеяния.
3.2 Кома ( )
Аберрация, характеризующаяся отличным от нуля коэффициентом F, называется комой. Компоненты лучевой аберрации в этом случае имеют, согласно (8). вид
(10)
|
Как мы видим, при фиксированных и радиусе зоны точка , (см. рис. 2.1) при изменении от 0 до дважды описывает в плоскости изображения окружность. Радиус окружности равен , а её центр находится на расстоянии от параксиального фокуса в сторону отрицательных значений у . Следовательно, эта окружность касается двух прямых, проходящих через параксиальное изображение , и составляющих с осью у углы в 30°. Если прибегает все возможные значения, то совокупность подобных окружностей образует область, ограниченную отрезками этих прямых и дугой наибольшей аберрационной окружности (рис. 3.3). Размеры получающейся области линейно возрастают с увеличением расстояния точки предмета от оси системы. При выполнении условия синусов Аббе система дает резкое изображение элемента плоскости предмета, расположенного в непосредственной близости от оси. Следовательно, в этом случае разложение функции аберрации не может содержать члены, линейно зависящие от . Отсюда вытекает, что если условие синусов выполняется, первичная кома отсутствует.
3.3 Астигматизм ( ) и кривизна поля ( )
Аберрации, характеризующиеся коэффициентами С и D, удобнее рассматривать совместно. Если все остальные коэффициенты в (8) равны нулю, то
. (11)
Чтобы продемонстрировать важность таких аберраций, предположим вначале, что пучок, формирующий изображение, очень узок. Согласно § 4.6 лучи такого пучка пересекают два коротких отрезка кривых, одна из которых (тангенциальная фокальная линия) ортогональна меридиональной плоскости, а другая (сагиттальная фокальная линия) лежит в этой плоскости. Рассмотрим теперь свет, исходящий от всех точек конечной области плоскости предмета. Фокальные линии в пространстве изображения перейдут в тангенциальную и сагиттальную фокальные поверхности. В первом приближении эти поверхности можно считать сферами. Пусть и — их радиусы, которые считаются положительными, если соответствующие центры кривизны расположены по ту сторону от плоскости изображения, откуда распространяется свет (в случае, изображенном на рис. 3.4. и ).
Радиусы кривизны можно выразить через коэффициенты С и D . Для этого при вычислении лучевых аберраций с учетом кривизны удобнее использовать обычные координаты, а не переменные Зайделя. Имеем (рис. 3.5)