Курсовая работа: Аналитическая химия

Рейнмут [8] выразил (5) в виде ряда:

Найденная любым из приведенных способов функция определяет форму вольтамперных кривых в случае обратимого электродного процесса. Уравнение тока пика легко получили на основе уравнения (7) и графика функции (8 - 11). Это выражение известно как уравнение Рендлса - Шевчика:

В случае  > 6 во всех решениях max = 0.447. Для температуры 25 °С это выражение сводится к зависимости

Левая полуширина пика, используемая как критерий обратимости, в этой модели для обратимого процесса составляет 0.056/n, В.

Делахеем и Берзинсом [9] была найдена функция, определяющая форму вольтамперной кривой в случае обратимого растворения объемного осадка металла (активность осадка принимается равной 1). В этом случае краевое условие принимает вид

Выражение для тока выглядит как

, где

z является вспомогательной переменной. Функция (16) имеет максимум, равный 0.541 при bt = 0.924. Соответствующий ток пика при 25 °С составляет

Левая полуширина пика в этой модели для обратимого процесса составляет 0.016n, В.

Никольсон [11] установила зависимость i(E) для растворения отдельного незаполненного монослоя металла с поверхности плоского электрода. При этом уравнение Нернста записывается как

a = m/ms (19)

a - активность осадка

m - количество металла на электроде,

ms - количество металла на единицу активности,

f - коэффициент активности,

Еp - равновесный потенциал, соответствующий а0 и с0

Активность а является в данном случае функцией времени

Схема решения такая же, как и в предыдущем случае. Уравнение вольтамперной кривой в интегральной форме в этой модели выглядит так:

Точки первой производной (bt) описывают форму кривой i(E) и

i = nFm0b(bt) (23)

Это уравнение эквивалентно уравнению

К-во Просмотров: 843
Бесплатно скачать Курсовая работа: Аналитическая химия